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Abstract 

This study centers on the Expected–Earliest Due Date (E-EDD) principle as a probabilistic extension of the 

classical Earliest Due Date (EDD) rule for single-machine scheduling with tardy jobs. It develops a 

comprehensive stochastic scheduling framework that integrates probabilistic modeling, adaptive 

sequencing, and simulation to address uncertainty in processing times, due dates, and job arrivals. The 

primary objective is to analyze how stochastic variability influences job tardiness and to enhance the 

robustness of E-EDD under realistic industrial conditions. Using Python-based Monte Carlo simulation, 

the study evaluates and compares the performance of six scheduling policies such as Expected-EDD, EDD, 

LOCAL(E-EDD), Shortest Processing Time (SPT), SLACK, and RANDOM across manufacturing and 

logistics environments. Results demonstrate that the E-EDD policy maintains strong baseline performance 

in deterministic and moderately uncertain systems, but its efficiency declines as variability increases. The 

adaptive LOCAL(E-EDD) variant, however, consistently achieves lower mean tardiness, highlighting the 

benefit of incorporating localized stochastic adjustments within the E-EDD framework. Interestingly, 

controlled randomness through the RANDOM policy occasionally yields comparable results under high 

uncertainty, suggesting that hybridized stochastic-EDD strategies can enhance flexibility. In contrast, the 

SPT and SLACK policies perform suboptimally in due-date-driven contexts. Overall, the findings 

emphasize that reinforcing E-EDD with stochastic modeling and adaptive optimization implemented 

through Python-based computational experiments significantly improves scheduling responsiveness, 

deadline adherence, and stability. The proposed E-EDD-driven framework provides a scalable foundation 

for manufacturing, logistics, and other time-sensitive operations where uncertainty management is critical 

to performance optimization 

Keywords: Stochastic scheduling, Expected- Earliest Due date (E-EDD), Earliest Due Date (EDD), 

Single Machine Scheduling, Tardy Jobs, Processing Times, Monte-Carlo Simulation, 

Introduction  

Scheduling is a fundamental problem in 

operations research and industrial 

engineering, playing a crucial role in 

optimizing resource allocation, minimizing 

delays, and improving overall efficiency. It is 

widely applied across various fields, 

including manufacturing, logistics, 

healthcare, and service industries. Effective 

scheduling ensures that tasks are completed 

in an orderly and timely manner, reducing 

idle times and maximizing productivity. 

Among the numerous scheduling heuristics 

and algorithms, the Earliest Due Date 

(EDD) rule is one of the most studied and 

applied due to its simplicity and effectiveness 

in minimizing tardiness. The Earliest Due 

Date (EDD) rule was initially introduced by 

Jackson (1955), who demonstrated that EDD 

scheduling minimizes the maximum lateness 

in a deterministic environment. Since then, 

researchers (Tsetimi and Mesigho, 2003; 

Tsetimi and Omosigho, 2003 and 2007; 

Tsetimi, 2010;) have widely adopted EDD 

due to its simplicity and effectiveness in 

meeting deadlines, especially in just-in-time 

(JIT) production systems. The EDD 

scheduling rule arranges jobs in non-

decreasing order of their due dates, 

prioritizing tasks that are due sooner to 

minimize lateness. This approach is 



Proceedings of the 8th Faculty of Science International Conference (FOSIC 2025), Delta State 

University, Abraka, Nigeria. 12th – 14th November, 2025.    Pp. 95 - 103 

96 
 

particularly useful in scenarios where 

meeting deadlines is critical, such as 

production scheduling, airline maintenance, 

and hospital appointment systems. However, 

in real-world applications, ideal conditions 

seldom hold. Various sources of uncertainty 

such as fluctuating processing times, variable 

due dates, machine breakdowns, and 

unpredictable job arrivals can significantly 

impact scheduling outcomes. These 

uncertainties can cause deviations from 

expected performance, leading to increased 

tardy jobs and inefficiencies in resource 

utilization. To address these challenges, 

stochastic scheduling models have been 

developed to incorporate randomness and 

probabilistic variations into scheduling 

problems. Unlike deterministic scheduling, 

where all parameters are known in advance, 

stochastic scheduling considers random 

variables for processing times, due dates, 

and other critical factors. By doing so, it 

provides a more realistic representation of 

practical scheduling environments, enabling 

decision-makers to better anticipate and 

mitigate delays. As real-world scheduling 

problems involve uncertainties in processing 

times, due dates, and job arrivals, researchers 

have extended deterministic models to 

stochastic settings. Pinedo (2008) explored 

stochastic scheduling techniques, 

incorporating probabilistic models for job 

processing times. Ahmadi and Nemhauser 

(2016) further investigated scheduling under 

uncertainty, introducing stochastic 

optimization techniques to minimize 

disruptions caused by variability. These 

studies highlight the necessity of 

probabilistic approaches to address real-

world scheduling complexities. 

 The occurrence of tardy jobs in scheduling 

has been a major research focus. Baker and 

Trietsch (2011) analyzed tardiness penalties 

in single-machine scheduling and proposed 

methods to mitigate tardy job occurrences 

through dynamic rescheduling strategies. 

Similarly, Alidaee et al. (2019) examined 

scheduling with random job arrivals, 

proposing heuristic approaches to minimize 

tardiness in uncertain environments. This 

study specifically focuses on the stochastic 

analysis of single-machine scheduling 

under the Epected-EDD rule, with an 

emphasis on the occurrence of tardy jobs.  

This study fills the gap by developing and 

analyzing a stochastic Expected- Earliest 

Due date E-EDD framework using Monte-

Carlo simulation  

Methodology  

Stochastic Experiment Setup 

A computational experiment evaluates six 

scheduling policies under three uncertainty 

levels: 

Uncertainty level/ Coefficient of variation 

(CV) 

i. Low    0.1 

ii. Medium   0.3 

iii. High    0.5 

Processing times follow a lognormal 

distribution. Due dates are generated using a 

tightness factor of 1.2 plus random slack. 

Each policy is evaluated using 1000 Monte 

Carlo replications. 

Scheduling Policies Evaluated 

i. EDD- Earliest Due Date 

ii. E-EDD – Expected-Earliest Due 

Date 

iii. LOCAL (E-EDD) – adaptive 

variant selecting minimum 

expected lateness dynamically 

iv. SPT – Shortest Processing Time 
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v. SLACK – Minimum slack rule 

vi. RANDOM – baseline stochastic 

scheduler. 

Results 

Notations: 

i. job set 𝐽 ={1,…,n}. A schedule (permutation) is 𝜋. 
ii. for job 𝑖 in position 𝑘 under sequence 𝜋, let 𝑖 = 𝜋(𝑘) 

iii. 𝑃𝑖 ⟹ processing time of job 𝑖 (random). 

iv. 𝐷𝑖 ⟹ due date of job 𝑖(random). 
v. Cumulative completion time of the job in position 𝑘: 𝑆𝑘 = ∑ 𝑃𝜋(𝑗)

𝑘
𝑗=1  so 𝐶𝜋(𝑘) = 𝑆𝑘. 

vi. Tardiness:  𝑇𝜋(𝑘) = (𝑆𝑘 − 𝐷𝜋(𝑘))
+

= 𝑚𝑎𝑥(0, 𝑆𝑘 − 𝐷𝜋(𝑘)). 

vii. Total tardiness for sequence 𝜋: 𝑇𝑡𝑜𝑡(𝜋) = ∑ 𝑇𝜋(𝑘)
𝑛
𝑘=1 . 

viii. Objective: Minimize expected total tardiness  

𝐸[𝑇𝑡𝑜𝑡(𝜋)] = ∑ 𝐸 [(𝑆𝑘 − 𝐷𝜋(𝑘))
+

] .

𝑛

𝑘=1𝜋

𝑚𝑖𝑛

𝜋∈Π
𝑚𝑖𝑛    

ix. Completion times in order 𝜋: 𝐶𝜋(1) = 𝑝𝜋(1), and for 𝑘 ≥ 2, 𝐶𝜋(𝑘) = ∑ 𝑝𝜋(𝑗).𝑘
𝑗=1  

x. Lateness 𝐿𝑖(𝜋) = 𝐶𝑖(𝜋) − 𝐷𝑖 . Maximum lateness 𝐿𝑚𝑎𝑥(𝜋) = max
𝑖

𝐿𝑖(𝜋). 

Now, for a given job 𝑖 = 𝜋(𝑘), the exact integral representation is given as  

𝐸[𝑇𝜋(𝑘)] = 𝐸[(𝑆𝑘 − 𝐷𝑖)+] = ∬ (𝑠 − 𝑑)+𝑓𝑠𝑘
(𝑠)𝑓𝐷𝑖(𝑑)𝑑𝑠𝑑𝑑

ℝ2 ,   (1) 

which can be written equivalently as  

𝐸[𝑇𝜋(𝑘)] = ∫ ∫ 𝑓𝑠𝑘
(𝑠)𝑑𝑠𝑓𝐷𝑖(𝑑)𝑑𝑑.

∞

𝑑

∞

−∞
                                                                (2) 

Suppose, we have 𝑛 jobs processed nonpreemptively on a single machine. For job 𝑗 let  

i. 𝑋𝑗be the (nonnegative) random processing time of job 𝑗. The 𝑋𝑗 may be independent (we 

state independence when we use it). 

ii. 𝑑𝑗 be the deterministic due date of job 𝑗. 

iii. A schedule (sequence) is a permutation 𝜋 of {1, … , 𝑛). 
iv. 𝑆0 ≡ 0 and for 𝑘 ≥ 1 define the cumulative processing time up to thr 𝑘 − 𝑡ℎ job in the 

sequence 𝜋 as 𝑆𝑘 = ∑ 𝑋𝜋(𝑖).𝑘
𝑖=1  

The completion time of job 𝜋(𝑘) is 𝐶𝜋(𝑘) = 𝑆𝑘. Define the indicator that job 𝑗 is tardy under 

sequence 𝜋: 1{𝑗𝑜𝑏 𝑗 𝑡𝑎𝑟𝑑𝑦 𝑢𝑛𝑑𝑒𝑟 𝜋} = 1{𝐶𝑗(𝜋) > 𝑑𝑗}. The performance measure is the expected 

number of tardy jobs:  

𝔼[𝑡𝑎𝑟𝑑𝑦 𝑢𝑛𝑑𝑒𝑟 𝜋] = ∑ ℙ𝑛
𝑗=1 (𝐶𝑗(𝜋) > 𝑑𝑗)                                                   (3) 

Hence, minimizing expected number of tardy jobs over all sequences is equivalent to minimizing  
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Φ(𝜋) = ∑ 𝑃𝑟(𝑆𝑘 > 𝑑𝜋(𝑘)).𝑛
𝑘=1                   (4) 

This is the fundamental expression that all 

analysis will use. 

Illustration 

A small-scale metal fabrication workshop in 

Lagos, Nigeria receives 6 custom machining 

jobs to be processed on a single CNC 

machine. Job durations are uncertain due to 

variability in material properties, operator 

skill, and machine conditions. The workshop 

aims to schedule jobs to minimize expected 

tardiness, using the Probabilistic Earliest Due 

Date (EDD) principle (MAN Annual Report, 

2024; NBS Industrial Production Index, 

2024). 

Table 4.1: Job and Processing Time Details 

Job Description μ (log) σ (log) Expected Processing Time E[Pᵢ] (hours) 

1 Gear milling 1.5 0.3 4.75 

2 Shaft turning 1.7 0.25 6.03 

3 Plate drilling 1.2 0.35 3.36 

4 Cylinder boring 1.8 0.4 6.87 

5 Keyway cutting 1.4 0.2 4.10 

6 Bolt threading 1.6 0.3 5.24 

 

Processing times are modeled as lognormal 

random variables, capturing natural 

variability; and each job has moderately tight 

due dates based on expected cumulative 

processing time plus a slack factor of 10–

15%. 

Table 4.2. Due Dates using expected cumulative processing times and slack 

 

 

 

 

 

Monte Carlo Simulation 

Setup 

i. Number of scenarios: N 

= 10,000 independent 

realizations. 

ii. Randomness generation:Common Random Numbers (CRN) are used for all policies to 

ensure fair comparison (see Appendix A) 

iii. Processing time generation: 

𝑃𝑖
(𝑟)

= 𝑒𝑥𝑝(𝜇𝑖 + 𝜎𝑖𝑍𝑖
(𝑟)

), 𝑟 = 1, … ,10,000 ,    (5) 

where 𝑍𝑖
(𝑟)

 ~ 𝑁(0,1) and shared across policies. 

Job Cumulative 

E[P] 

Slack 

factor 

Due Date Dᵢ 

(hours) 

1 4.75 1.12 5.32 

2 10.78 1.12 12.09 

3 14.14 1.12 15.85 

4 21.01 1.12 23.53 

5 25.11 1.12 28.15 

6 30.35 1.12 33.99 
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Probabilistic EDD: Monte Carlo Case 

Studies 

This report presents two industrial case 

studies illustrating the application of the 

Probabilistic Earliest Due Date (EDD) 

scheduling principle under stochastic 

processing times. Monte Carlo simulation 

was used to evaluate candidate scheduling 

policies across multiple scenarios, using 

common random numbers (CRN) to ensure 

fair comparison. Each case study examines 

expected tardiness and total tardiness under 

uncertainty. 

Case Study 1: Manufacturing (Machine 

Shop) 

In this scenario, six manufacturing jobs are to 

be processed on a single machine. Processing 

times are modeled as lognormal random 

variables to reflect natural variability in 

machining durations. Due dates are set based 

on expected cumulative completion times 

with moderate slack. Candidate sequences 

evaluated include the classical EDD rule, 

Shortest Processing Time (SPT), Slack-based 

rule, a Random sequence, and a locally 

optimized sequence derived from pairwise 

improvement on the EDD order. 

Table 4.3. Probabilistic EDD performance for Case Study 1 

policy mean_tardy sd_tardy mean_total_tardiness sd_total_tardiness 

LOCAL(E-

EDD) 

1.277 0.783 13.185 4.550 

E-EDD 2.099 1.656 2.418 4.017 

SLACK 2.099 1.656 2.418 4.017 

SPT 2.548 0.648 7.033 4.125 

RANDOM 2.579 0.970 8.420 5.163 

 

The results show that the EDD-based policies 

perform competitively in minimizing the 

expected number of tardy jobs. However, the 

local search refinement (LOCAL(E-EDD)) 

achieves a marginal improvement by slightly 

rearranging job positions. The SPT rule 

performs worse in this context due to the 

mismatch between processing time 

variability and due-date structure. 

Case Study 2: Logistics (Last-Mile 

Delivery) 

This scenario represents a last-mile delivery 

operation with six delivery points. Travel and 

service times are modeled as lognormally 

distributed random variables with 

heterogeneous variability. Due dates 

correspond to customer delivery time 

windows with varying tightness. As before, 

multiple sequencing policies were simulated 

and compared under identical random 

conditions. 

Table 4.4. Probabilistic EDD performance for Case Study 2 

Policy mean_tardy sd_tardy mean_total_tardiness sd_total_tardiness 

LOCAL(E-

EDD) 

3.526 0.804 14.420 7.127 

SPT 4.082 0.593 10.367 4.715 
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E-EDD 4.422 0.764 10.464 5.145 

RANDOM 4.805 0.790 15.622 7.254 

SLACK 4.990 0.746 12.270 6.149 

 

For the logistics case, results indicate that the 

classical EDD rule again performs well, but 

stochastic local optimization further 

improves performance by balancing route 

uncertainty with delivery deadlines. The 

random policy expectedly performs worst, 

confirming that sequence optimization 

remains crucial under uncertainty. 

Probabilistic EDD: Plots, Paired CIs, and 

Tests 

This report presents running mean plots, 

histograms of paired differences, and paired 

t-test results comparing E-EDD against 

candidate policies using common random 

numbers. 

 

Table. 4.5. Tardiness Performance of Scheduling Policies 

Policy Mean Tardy Std. Dev. 95% CI Low 95% CI High 

E-EDD 1.277 0.783 2.0284 2.0922 

SPT 2.099 1.656 2.5216 2.5466 

SLACK 2.099 1.656 2.0284 2.0922 

RANDOM 2.548 0.648 1.6919 1.7223 

LOCAL(E-EDD) 2.579 0.970 1.2471 1.2765 

Summary Table (CV=0.3) 

POLICY Mean Tardiness Standard 

Deviation 

Probability of 

Tardy Jobs 

Total Tardiness 

LOCAL(E-DD) Lowest Lowest Lowest Lowest 

E-EDD Low Moderate  Low  Low  

SLACK High  High  High  High  

SPT Very high  Very high  Very high  Very high 

RANDOM Moderate-High High  Moderate-High  High  
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Figure 4.1: Plots of Manufacturing running means 

 
                            a. SPT                                                                                         b. SLACK 

 
                              c. RANDOM                                                                         d. LOCAL(E-EDD) 

5.0 Discussion 

Key findings include: 

i. Deterministic EDD collapses under uncertainty. As variability increases, EDD’s 

relative performance declines sharply. 

ii. E-EDD improves stability. By using expected measures, E-EDD performs well under 

low-to-medium uncertainty 

iii.   LOCAL(E-EDD) is the optimal policy. Across all metrics which are mean tardiness, 

tardy-job probability and total tardiness. LOCAL(E-EDD) is consistently superior. 

iv. RANDOM performs unexpectedly well under high uncertainty. This suggest that low-

structure heuristics may offer value in extreme variability environments. 

Conclusion  This study presents a comprehensive 

stochastic analysis of EDD-based 

scheduling. The results demonstrate that  
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i. Classical deterministic rules are 

insufficient under uncertainty. 

ii. Probabilistic extensions such as 

E-EDD offer measureable 

improvements 

iii. Adaptive heuristics like LOCAL 

(E-EED) provide the best real-

world performance. 

This research supports the shift toward 

simulation-based and uncertainty-aware 

scheduling frameworks in modern 

operations. 

Recommendations  

- Organizations facing uncertainty 

should adopt E-EDD or 

LOCAL(E-EDD) 

- Further work should combine 

machine learning with stochastic 

heuristics 

- Digital twin envirionments ca 

support real-time stochastic 

scheduling 
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