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Abstract

This study centers on the Expected—Earliest Due Date (E-EDD) principle as a probabilistic extension of the
classical Earliest Due Date (EDD) rule for single-machine scheduling with tardy jobs. It develops a
comprehensive stochastic scheduling framework that integrates probabilistic modeling, adaptive
sequencing, and simulation to address uncertainty in processing times, due dates, and job arrivals. The
primary objective is to analyze how stochastic variability influences job tardiness and to enhance the
robustness of E-EDD under realistic industrial conditions. Using Python-based Monte Carlo simulation,
the study evaluates and compares the performance of six scheduling policies such as Expected-EDD, EDD,
LOCAL(E-EDD), Shortest Processing Time (SPT), SLACK, and RANDOM across manufacturing and
logistics environments. Results demonstrate that the E-EDD policy maintains strong baseline performance
in deterministic and moderately uncertain systems, but its efficiency declines as variability increases. The
adaptive LOCAL(E-EDD) variant, however, consistently achieves lower mean tardiness, highlighting the
benefit of incorporating localized stochastic adjustments within the E-EDD framework. Interestingly,
controlled randomness through the RANDOM policy occasionally yields comparable results under high
uncertainty, suggesting that hybridized stochastic-EDD strategies can enhance flexibility. In contrast, the
SPT and SLACK policies perform suboptimally in due-date-driven contexts. Overall, the findings
emphasize that reinforcing E-EDD with stochastic modeling and adaptive optimization implemented
through Python-based computational experiments significantly improves scheduling responsiveness,
deadline adherence, and stability. The proposed E-EDD-driven framework provides a scalable foundation
for manufacturing, logistics, and other time-sensitive operations where uncertainty management is critical
to performance optimization

Keywords: Stochastic scheduling, Expected- Earliest Due date (E-EDD), Earliest Due Date (EDD),
Single Machine Scheduling, Tardy Jobs, Processing Times, Monte-Carlo Simulation,

Introduction applied due to its simplicity and effectiveness

in minimizing tardiness. The Earliest Due
Scheduling is a fundamental problem in Date (EDD) rule was initially introduced by
operations  research  and industrial Jackson (1955), who demonstrated that EDD
engineering, playing a crucial role in scheduling minimizes the maximum lateness
optimizing resource allocation, minimizing in a deterministic environment. Since then,
delays, and improving overall efficiency. It is researchers (Tsetimi and Mesigho, 2003;
widely applied across various fields, Tsetimi and Omosigho, 2003 and 2007;
including manufacturing, logistics, Tsetimi, 2010;) have widely adopted EDD
healthcare, and service industries. Effective due to its simplicity and effectiveness in
scheduling ensures that tasks are completed meeting deadlines, especially in just-in-time
in an orderly and timely manner, reducing (JIT) production systems. The EDD
idle times and maximizing productivity. scheduling rule arranges jobs in non-
Among the numerous scheduling heuristics decreasing order of their due dates,
and algorithms, the Earliest Due Date prioritizing tasks that are due sooner to
(EDD) rule is one of the most studied and minimize lateness. This approach is
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particularly useful in scenarios where
meeting deadlines is critical, such as
production scheduling, airline maintenance,
and hospital appointment systems. However,
in real-world applications, ideal conditions
seldom hold. Various sources of uncertainty
such as fluctuating processing times, variable
due dates, machine breakdowns, and
unpredictable job arrivals can significantly
impact  scheduling  outcomes.  These
uncertainties can cause deviations from
expected performance, leading to increased
tardy jobs and inefficiencies in resource
utilization. To address these challenges,
stochastic scheduling models have been
developed to incorporate randomness and
probabilistic variations into scheduling
problems. Unlike deterministic scheduling,
where all parameters are known in advance,
stochastic scheduling considers random
variables for processing times, due dates,
and other critical factors. By doing so, it
provides a more realistic representation of
practical scheduling environments, enabling
decision-makers to better anticipate and
mitigate delays. As real-world scheduling
problems involve uncertainties in processing
times, due dates, and job arrivals, researchers
have extended deterministic models to
stochastic settings. Pinedo (2008) explored
stochastic scheduling techniques,
incorporating probabilistic models for job
processing times. Ahmadi and Nemhauser
(2016) further investigated scheduling under
uncertainty, introducing stochastic
optimization  techniques to  minimize
disruptions caused by variability. These
studies  highlight the necessity  of
probabilistic approaches to address real-
world scheduling complexities.

The occurrence of tardy jobs in scheduling
has been a major research focus. Baker and
Trietsch (2011) analyzed tardiness penalties
in single-machine scheduling and proposed
methods to mitigate tardy job occurrences
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through dynamic rescheduling strategies.
Similarly, Alidaee et al. (2019) examined
scheduling with random job arrivals,
proposing heuristic approaches to minimize
tardiness in uncertain environments. This
study specifically focuses on the stochastic
analysis of single-machine scheduling
under the Epected-EDD rule, with an
emphasis on the occurrence of tardy jobs.

This study fills the gap by developing and
analyzing a stochastic Expected- Earliest
Due date E-EDD framework using Monte-
Carlo simulation

Methodology

Stochastic Experiment Setup

A computational experiment evaluates six
scheduling policies under three uncertainty

levels:

Uncertainty level/ Coefficient of variation
(CV)

i. Low 0.1
ii. Medium 0.3
iii.  High 0.5

Processing times follow a lognormal
distribution. Due dates are generated using a
tightness factor of 1.2 plus random slack.

Each policy is evaluated using 1000 Monte
Carlo replications.

Scheduling Policies Evaluated

i. EDD- Earliest Due Date
ii. E-EDD — Expected-Earliest Due
Date
iii. LOCAL (E-EDD) — adaptive
variant selecting minimum
expected lateness dynamically
iv.  SPT — Shortest Processing Time
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V. SLACK — Minimum slack rule Results
vi.  RANDOM — baseline stochastic
scheduler.
Notations:

Vi.
Vii.
viii.

iX.
X.

job set ] ={1,...,n}. A schedule (permutation) is 7.

for job i in position k under sequence =, let i = (k)

P; = processing time of job i (random).

D; = due date of job i(random).

Cumulative completion time of the job in position k: S, = Zle Pr(jy SO Cr(ky = Sk-
Tardiness: Tn(k) = (Sk - Dn(k))+ = max(O, Sk — D”(k)).

Total tardiness for sequence m: Ty, (1) = Yk=1 Tr(i)-

Obijective: Minimize expected total tardiness

min n

1Tznellr'[l [Teoe(m)] = Z E [(Sk - D,T(k))Jr].

Completion times in order 7: Cr1y = pr(1), and for k = 2, Cry = Zj?:lpn(j).
Lateness L;(m) = C;(m) — D;. Maximum lateness L, 4, () = max L; ().
L

Now, for a given job i = m(k), the exact integral representation is given as

E[Tao] = E[(Sk = D] = [fo(s — d)* £, () Dy(d)dsdd, (1)
which can be written equivalently as
ETeao) = [, I fi ()dsfD;(d)dd. @)

Suppose, we have n jobs processed nonpreemptively on a single machine. For job j let

X;be the (nonnegative) random processing time of job j. The X; may be independent (we
state independence when we use it).

d; be the deterministic due date of job j.

A schedule (sequence) is a permutation r of {1, ..., n).

So = 0 and for k > 1 define the cumulative processing time up to thr k — th job in the
sequence 7 as S, = Yy Xp)-

The completion time of job m(k) is Cr) = Sk. Define the indicator that job j is tardy under

sequence m: 1{job j tardy under } = 1{C;) > d,}. The performance measure is the expected
number of tardy jobs:

E[tardy under m] = ¥7_, P (Citmy > d)) 3)

Hence, minimizing expected number of tardy jobs over all sequences is equivalent to minimizing
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d(m) = Z:l Pr(Sk > dn(k))- (4)
This is the fundamental expression that all machine. Job durations are uncertain due to
analysis will use. variability in material properties, operator
skill, and machine conditions. The workshop
Illustration aims to schedule jobs to minimize expected
A small-scale metal fabrication workshop in tardiness, using the Probabilistic Earliest Due
Lagos, Nigeria receives 6 custom machining Date (EDD) principle (MAN Annual Report,
jobs to be processed on a single CNC 2024; NBS Industrial Production Index,
2024).

Table 4.1: Job and Processing Time Details
Job Description u(log) o (log) Expected Processing Time E[Pi] (hours)

1 Gear milling 1.5 0.3 4.75
2 Shaft turning 1.7 0.25 6.03
3 Plate drilling 1.2 0.35 3.36
4 Cylinder boring 1.8 0.4 6.87
5)
6

Keyway cutting 1.4 0.2 4.10

Bolt threading 1.6 0.3 5.24

Processing times are modeled as lognormal due dates based on expected cumulative
random  variables, capturing natural processing time plus a slack factor of 10-
variability; and each job has moderately tight 15%.
Table 4.2. Due Dates using expected cumulative processing times and slack
Job Cumulative Slack Due Date D
E[P] factor (hours)
1 4.75 1.12 5.32
2 10.78 1.12 12.09
Monte Carlo Simulation
Setup 3 1414 1.12 15.85
i. Number 4 21.01 1.12 23.53 of scenarios: N
=10000 55517 1.12 28.15 independent
realizations.
6 30.35 1.12 33.99

ii. Randomness generation:Common Random Numbers (CRN) are used for all policies to
ensure fair comparison (see Appendix A)
iii. Processing time generation:

P = exp(yi + al-Zi(r)),r =1,...,10,000, (5)
where Zl.(r) ~ N(0,1) and shared across policies.
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Probabilistic EDD: Monte Carlo Case
Studies

This report presents two industrial case
studies illustrating the application of the
Probabilistic Earliest Due Date (EDD)
scheduling  principle under stochastic
processing times. Monte Carlo simulation
was used to evaluate candidate scheduling
policies across multiple scenarios, using
common random numbers (CRN) to ensure
fair comparison. Each case study examines
expected tardiness and total tardiness under
uncertainty.

Case Study 1: Manufacturing (Machine
Shop)

In this scenario, six manufacturing jobs are to
be processed on a single machine. Processing
times are modeled as lognormal random
variables to reflect natural variability in
machining durations. Due dates are set based
on expected cumulative completion times
with moderate slack. Candidate sequences
evaluated include the classical EDD rule,
Shortest Processing Time (SPT), Slack-based
rule, a Random sequence, and a locally
optimized sequence derived from pairwise
improvement on the EDD order.

Table 4.3. Probabilistic EDD performance for Case Study 1

policy mean_tardy sd_tardy mean_total tardiness sd_total tardiness
LOCAL(E- 1.277 0.783 13.185 4.550

EDD)

E-EDD 2.099 1.656 2.418 4.017

SLACK 2.099 1.656 2.418 4.017

SPT 2.548 0.648 7.033 4.125

RANDOM 2.579 0.970 8.420 5.163

The results show that the EDD-based policies
perform competitively in minimizing the
expected number of tardy jobs. However, the
local search refinement (LOCAL(E-EDD))
achieves a marginal improvement by slightly
rearranging job positions. The SPT rule
performs worse in this context due to the
mismatch  between  processing  time
variability and due-date structure.

Case Study 2: Logistics (Last-Mile
Delivery)

This scenario represents a last-mile delivery
operation with six delivery points. Travel and
service times are modeled as lognormally
distributed  random  variables  with
heterogeneous  variability. Due dates
correspond to customer delivery time
windows with varying tightness. As before,
multiple sequencing policies were simulated
and compared under identical random
conditions.

Table 4.4. Probabilistic EDD performance for Case Study 2

Policy mean_tardy  sd_tardy mean_total tardiness sd_total tardiness
LOCAL(E- 3.526 0.804 14.420 7.127

EDD)

SPT 4.082 0.593 10.367 4.715
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E-EDD 4.422 0.764 10.464 5.145
RANDOM 4.805 0.790 15.622 7.254
SLACK 4.990 0.746 12.270 6.149

For the logistics case, results indicate that the
classical EDD rule again performs well, but
stochastic  local optimization  further
improves performance by balancing route
uncertainty with delivery deadlines. The
random policy expectedly performs worst,
confirming that sequence optimization
remains crucial under uncertainty.

Probabilistic EDD: Plots, Paired Cls, and
Tests

This report presents running mean plots,
histograms of paired differences, and paired
t-test results comparing E-EDD against
candidate policies using common random
numbers.

Table. 4.5. Tardiness Performance of Scheduling Policies

Policy Mean Tardy Std. Dev. 95% CI Low 95% CI High
E-EDD 1.277 0.783 2.0284 2.0922
SPT 2.099 1.656 2.5216 2.5466
SLACK 2.099 1.656 2.0284 2.0922
RANDOM 2.548 0.648 1.6919 1.7223
LOCAL(E-EDD) 2.579 0.970 1.2471 1.2765
Summary Table (CV=0.3)
POLICY Mean Tardiness | Standard Probability of Total Tardiness
Deviation Tardy Jobs
LOCAL(E-DD) | Lowest Lowest Lowest Lowest
E-EDD Low Moderate Low Low
SLACK High High High High
SPT Very high Very high Very high Very high
RANDOM Moderate-High | High Moderate-High | High
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Figure 4.1: Plots of Manufacturing running means
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5.0 Discussion
Key findings include:

I Deterministic EDD collapses under uncertainty. As variability increases, EDD’s
relative performance declines sharply.

ii. E-EDD improves stability. By using expected measures, E-EDD performs well under
low-to-medium uncertainty

iii. LOCAL(E-EDD) is the optimal policy. Across all metrics which are mean tardiness,

tardy-job probability and total tardiness. LOCAL(E-EDD) is consistently superior.
iv. RANDOM performs unexpectedly well under high uncertainty. This suggest that low-
structure heuristics may offer value in extreme variability environments.
Conclusion This study presents a comprehensive
stochastic analysis of EDD-based
scheduling. The results demonstrate that
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I Classical deterministic rules are
insufficient under uncertainty.

ii. Probabilistic extensions such as
E-EDD  offer = measureable
improvements

iii. Adaptive heuristics like LOCAL
(E-EED) provide the best real-
world performance.

This research supports the shift toward

simulation-based and uncertainty-aware

scheduling frameworks in  modern
operations.

Recommendations

- Organizations facing uncertainty
should adopt E-EDD or
LOCAL(E-EDD)

- Further work should combine
machine learning with stochastic

heuristics
- Digital twin envirionments ca
support  real-time  stochastic
scheduling
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