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Abstract 
We propose an Adaptive Hybrid Conjugate Gradient (AHCG) method for solving large-scale 

unconstrained optimization problems. AHCG addresses known limitations of classical 

Fletcher-Reeves (FR), Polak-Ribière-Polyak (PRP), and Dai-Yuan (DY) methods by 

introducing a curvature-aware adaptive parameter that dynamically blends PRP and DY search 

directions. To enhance robustness and convergence speed, AHCG integrates a stabilization 

term and diagonal quasi-Newton scaling that approximates local curvature with minimal 

overhead. Global convergence is established under standard strong Wolfe conditions. 

Numerical experiments conducted on 20 diverse CUTEst benchmark problems demonstrate 

that AHCG systematically outperforms five baseline methods (FR, PRP, DY, H1, NH3), 

achieving reductions of 25-35% in iteration count and 20-30% in CPU time. AHCG has a 

success rate of 95%, and it has effectively resolved the largest number of problems, mainly on 

high-dimensional and ill-conditioned test cases. The evidence points toward AHCG as a 

method to be used on large-scale nonlinear optimization problems with scalability and 

reliability. Such a method has significant potential for use in both engineering design and 

machine-learning applications. 

Keywords: Nonlinear Optimization, Conjugate Gradient Methods, Adaptive Hybridization, 

Global Convergence, Quasi-Newton Scaling 

Introduction 

We consider the unconstrained optimization problem: 

 min 𝑓(𝑥),  𝑥 𝜖 ℝ𝑛, (1) 

where 𝑓: ℝ𝑛 → ℝ is a continuously 

differentiable nonlinear function. For large-

scale problems, conjugate gradient (CG) 

methods provide a compelling balance of 

theoretical rigor and computational 

efficiency. Unlike second-order methods, 

CG algorithms require only gradient 

evaluations and avoid the 𝑂(𝑛2) memory 

cost of storing and updating full Hessian 

matrices, making them especially attractive 

in high-dimensional settings (Nocedal & 

Wright, 2006). 

The origins of CG methods trace back to 

Hestenes and Stiefel (1952), whose linear 

CG formulation inspired nonlinear 

extensions such as the Fletcher-Reeves 

(FR) method (Fletcher & Reeves, 1964). 

FR guarantees global convergence under 

exact or inexact line search conditions (Al-

Baali, 1985), but it often stagnates in 

practical applications due to its rigid use of 

the conjugacy condition. The Polak-

Ribière-Polyak (PRP) method (Polyak, 

1969; Polak & Ribière, 1969), on the other 

hand, introduces a directional update that 

often results in better practical performance 

due to its natural restart tendencies. 

However, PRP lacks general convergence 

guarantees for nonconvex problems 
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(Powell, 1984), making it less robust from 

a theoretical standpoint. In response to 

these trade-offs, hybrid strategies emerged-

most notably the H1 method (Touati-

Ahmed & Storey, 1990), which combines 

FR and PRP using fixed blending rules, and 

the NH3 method (Zhang et al., 2008), 

which incorporates nonlinear curvature 

information. Yet these approaches rely on 

static update formulas that do not respond 

effectively to changes in local problem 

geometry, especially in ill-conditioned or 

nonconvex regions (Hager & Zhang, 2005). 

While hybrid approaches like H1 and NH3 

improve upon static schemes, their lack of 

curvature adaptivity often limits their 

effectiveness in highly nonlinear or sharp-

curvature regions. 

In recent times, there have been many 

papers written about how to use adaptive 

versions of gradient methods to improve 

optimization results. One of the most 

important examples of this effort is the Dai-

Yuan (DY) method, which provides a 

globally convergent algorithm by using a 

special conjugate to specify the line search 

direction for the gradient. However, its 

fixed formulation often leads to overly 

conservative search directions and slower 

convergence. Concurrently, low-rank and 

diagonal quasi-Newton approximations 

have gained popularity for incorporating 

curvature information without the memory 

burden of full Hessian updates (Andrei, 

2009). These methods, while promising, 

have rarely been integrated systematically 

into the CG framework. Recent advances in 

limited-memory and stochastic conjugate 

gradient methods (Hager & Zhang, 2023) 

have further expanded the applicability of 

CG variants to modern large-scale settings. 

However, such methods often rely on 

memory buffers or random sampling, 

whereas AHCG maintains a fully 

deterministic and memory-free structure. 

In this work, we address the 

aforementioned limitations by proposing an 

Adaptive Hybrid Conjugate Gradient 

(AHCG) method that combines curvature-

aware adaptivity with efficient Hessian 

approximation. Our method introduces a 

dynamic scalar parameter that interpolates 

between PRP and DY directions based on 

gradient alignment and local curvature 

conditions. This hybridization is stabilized 

through a regularized denominator to 

ensure numerical robustness, especially in 

nonconvex landscapes. Additionally, 

AHCG incorporates a diagonal quasi-

Newton scaling matrix, which improves 

convergence by approximating curvature 

information while preserving the 𝑂(𝑛) 

complexity inherent in classical CG 

methods. Compared to full quasi-Newton 

or low-rank updates, diagonal scaling offers 

a memory-free alternative that captures 

essential curvature trends while remaining 

scalable for high-dimensional optimization. 

The theoretical properties of AHCG are 

rigorously analysed, with global 

convergence established under the standard 

strong Wolfe conditions via an extension of 

the Zoutendijk framework. To validate the 

proposed approach, we conduct extensive 

numerical experiments on the CUTEst 

benchmark suite (Bongartz et al., 1995), 

comparing AHCG with classical and 

modern CG variants. The results 

demonstrate that AHCG consistently 

outperforms baseline methods, achieving 

reductions of 25-35% in iteration counts 

and 20-30% in total computation time, 

particularly in high-dimensional and ill-

conditioned scenarios. 

The main contributions of this 

work are threefold: 

(i) We propose a novel curvature-

aware adaptive hybrid 

conjugate gradient method 

(AHCG) that dynamically 

blends PRP and Dai-Yuan 

updates using a geometry-

sensitive weighting scheme. 

(ii) We incorporate a stabilized 

diagonal quasi-Newton 

scaling strategy to approximate 

Hessian information without 

increasing memory complexity. 
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(iii) We establish global 

convergence under strong 

Wolfe conditions and 

demonstrate through extensive 

numerical experiments on 

CUTEst problems that AHCG 

consistently outperforms 

classical and hybrid CG 

variants, reducing iterations by 

25–35% and CPU time by 20–

30%. 

The organization of this paper includes four 

parts: in the Materials Section of this paper, 

the AHCG Algorithm is described; in the 

Results Section, computational results are 

shown numerically; in the Discussion 

section, the implications of the results are 

examined; and finally, the Conclusion 

Section summarizes both the contributions 

to the field of optimization and the direction 

of future research. 

 

Materials and Methods 

We propose the Adaptive Hybrid Conjugate 

Gradient (AHCG) method for solving 

large-scale unconstrained optimization 

problems in equation (1). AHCG enhances 

classical nonlinear conjugate gradient (CG) 

methods through three integrated 

components: a curvature-aware hybrid 

parameter that interpolates between PRP 

and DY schemes, a diagonal quasi-Newton 

scaling matrix, and a stabilization 

mechanism for robustness. The resulting 

algorithm preserves the 

𝑂(𝑛) computational complexity of CG 

methods while improving adaptability and 

convergence efficiency in both convex and 

nonconvex settings. 

Let 𝑥𝑘 denote the current iterate and 

𝑔𝑘 = ∇𝑓(𝑥𝑘) the gradient. At each 

iteration 𝑘 ≥ 1, AHCG updates the search 

direction 𝑑𝑘 via: 

 𝑑𝑘 = −𝐻𝑘𝑔𝑘 + 𝛽𝑘
𝐴𝐻𝐶𝐺𝑑𝑘−1, (2) 

where 𝐻𝑘  ∈  ℝ𝑛×𝑛 is a diagonal scaling 

matrix and 𝛽𝑘 is a hybrid conjugate 

gradient parameter combining PRP and 

Dai-Yuan formulations. This formulation 

generalizes the classical CG direction and 

introduces curvature adaptivity through 𝐻𝑘 

and dynamic weighting. 

Curvature-Aware Hybrid Parameter 

To capture both stability and acceleration 

properties, AHCG defines 𝛽𝑘 as a convex 

combination: 

 𝛽𝑘
𝐴𝐻𝐶𝐺 = 𝜙𝑘𝛽𝑘

𝑃𝑅𝑃 + (1 − 𝜙𝑘)𝛽𝑘
𝐷𝑌, (3) 

where 

 
𝛽𝑘

𝑃𝑅𝑃 =
𝑔𝑘

𝑇(𝑔𝑘−𝑔𝑘−1)

||𝑔𝑘−1||
2 , 𝛽𝑘

𝐷𝑌 =
||𝑔𝑘||

2

𝑑𝑘−1
𝑇 (𝑔𝑘−𝑔𝑘−1) + 𝛿

 
(4) 

Here, 𝛿 > 0 is a small regularization constant to prevent division by zero in flat or highly 

nonconvex regions. 

The weighting factor 𝜙𝑘 𝜖 [0, 1] adapts based on local geometry and gradient history: 

 
𝜙𝑘 =

|𝑔𝑘
𝑇𝑔𝑘−1|

||𝑔𝑘||||𝑔𝑘−1|| + 𝜀
∙ exp (−𝜂 ∙

|𝑑𝑘−1
𝑇 (𝑔𝑘−𝑔𝑘−1)|

||𝑑𝑘−1|| ∙ ||𝑔𝑘 − 𝑔𝑘−1|| + 𝜀
), 

(5) 
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where 𝜀 > 0 and 𝜂 > 0 are user-defined 

tolerances for numerical stability and 

curvature sensitivity, respectively. This 

expression favors PRP-like updates when 

gradients are strongly aligned and shifts 

toward DY-style steps when curvature 

becomes sharp or erratic. 

Diagonal Quasi-Newton Scaling 

To improve directional quality 

without compromising computational cost, 

AHCG incorporates a diagonal matrix 

𝐻𝑘 = 𝑑𝑖𝑎𝑔(ℎ𝑘
(1)

, … , ℎ𝑘
(𝑛)

) computed via a 

Barzilai-Borwein (BB)-like update: 

 
ℎ𝑘

(𝑖)
= max (

𝑠𝑘
(𝑖)

𝑦𝑘
(𝑖)

+ 𝜏
, ℎ𝑚𝑖𝑛) , 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛, 

(6) 

where 𝑠𝑘 = 𝑥𝑘 − 𝑥𝑘−1, 𝑦𝑘 = 𝑔𝑘 −
𝑔𝑘−1, 𝜏 > 0 is a damping constant, and 

ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥 > 0 ensure boundedness and 

positive definiteness to prevent ill-

conditioning. The diagonal entries of 𝐷𝑘 are 

constrained within the interval [10−6, 106] 
to ensure numerical stability and avoid 

extreme scaling in flat or ill-posed regions. 

This diagonal scaling approximates second-

order curvature using only local differences 

and incurs 𝑂(𝑛) iteration-wise complexity. 

Step Size via Strong Wolfe Conditions 

The step size 𝛼𝑘 > 0 is chosen to 

satisfy the strong Wolfe conditions: 

 𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘𝑔𝑘
𝑇𝑑𝑘, (7) 

 |∇𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇𝑑𝑘| ≤ 𝑐2|𝑔𝑘
𝑇𝑑𝑘|, (8) 

where 0 < 𝑐1 < 𝑐2 < 1 are fixed constants. 

The implementation employs cubic 

interpolation initialized at 𝛼 =
min (1, 1.01𝛼𝑘−1) and falls back to 

bisection if the Wolfe conditions are not 

satisfied within a fixed number of function 

evaluations. 

To ensure stability near critical 

points, AHCG includes a restart mechanism 

that resets the direction to steepest descent 

when the angle between 𝑔𝑘 and 𝑑𝑘−1 

becomes nearly orthogonal or conjugacy is 

lost. Specifically, if 𝑑𝑘
𝑇𝑔𝑘 ≥ −𝜃||𝑑𝑘|| ∙

||𝑔𝑘||, the direction is reset to 𝑑𝑘 =
−𝐻𝑘𝑔𝑘. 

Complete AHCG Algorithm 

Algorithm 1 (AHCG) 

Input: Objective function 𝑓, initial point 𝑥0, 𝜖 = 10−6, Wolfe parameters 𝛿 =
0.01, 𝜎 = 0.1, scaling bounds ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥 . 

Output: Optimized solution 𝑥∗ 

1. Initialize: 𝑑0 = −𝑔0, 𝐻0 = 𝐼𝑛, 𝑘 = 0. 

2. While ||𝑔𝑘|| > 𝜖: 
a. Compute 𝛼𝑘 via strong Wolfe line search. 

b. Update 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 evaluate 𝑔𝑘+1. 

c. Compute 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. 

d. Update 𝐻𝑘+1 with bounds [10−8, 108] via BB scaling. 

e. Calculate 𝛽𝑘+1
𝐴𝐻𝐶𝐺 adaptively. 

f. If |𝑔𝑘
𝑇𝑑𝑘−1| > 0.2||𝑔𝑘||2, restart: 𝑑𝑘+1 = −𝑔𝑘+1     

g. Else 𝑑𝑘+1 = −𝐻𝑘+1𝑔𝑘+1 + 𝛽𝑘+1
𝐴𝐻𝐶𝐺𝑑𝑘 
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h. 𝑘 = 𝑘 + 1 

Practical Safeguards 

To enhance robustness, AHCG includes 

several implementation safeguards: 

 Scaling bounds: The diagonal 

entries of 𝐻𝑘 are bounded in 

[ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥] to avoid ill-

conditioning. 

 Gradient difference 

regularization: When ||𝑦𝑘|| is 

near zero, entries of 𝐻𝑘 are 

regularized using 𝜏 to avoid 

instability. 

 Restart policy: If curvature is 

erratic or directional degeneracy 

occurs, the search direction is reset 

to scaled steepest descent. An 

automatic restart mechanism 

triggers steepest descent when 

conjugacy is lost, specifically 

when |𝑔𝑘
𝑇𝑑𝑘−1| > 0.2||𝑔𝑘||2, 

preventing stagnation in non-

quadratic regions. 

 Fallback in line search: If the 

strong Wolfe conditions are not 

satisfied after 15-20 function 

evaluations, a bisection fallback 

ensures progress. 

These features ensure that AHCG remains 

stable and efficient in both smooth and 

irregular optimization landscapes. 

Theoretical Analysis 

We now establish the global 

convergence of the proposed Adaptive 

Hybrid Conjugate Gradient (AHCG) 

method. The analysis is based on standard 

assumptions and extends the classical 

Zoutendijk framework to accommodate the 

curvature-aware hybrid parameter and 

diagonal scaling matrix. 

Let {𝑥𝑘} be the sequence generated 

by AHCG, with gradients 𝑔𝑘 = ∇𝑓(𝑥𝑘), 

search directions 𝑑𝑘, and step sizes 𝛼𝑘 

satisfying the strong Wolfe conditions. 

Assumptions 

(A1) Lipschitz Continuity: The gradient 

∇𝑓 is Lipschitz continuous with constant 

𝐿 > 0 such that: 

 ∥ ∇𝑓(𝑥) − ∇𝑓(𝑦) ∥≤ 𝐿 ∥ 𝑥 − 𝑦 ∥ ∀𝑥, 𝑦 ∈ ℝ𝑛. (9) 

(A2) Level Set Boundedness: The level set Ω = {𝑥 𝜖 ℝ𝑛 ∣ 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded below 

and contained in a compact set. 

(A3) Bounded Scaling Matrix: The diagonal scaling matrix 𝐻𝑘 is symmetric positive definite 

and satisfies: 

 ℎ𝑚𝑖𝑛𝐼 ≤ 𝐻𝑘 ≤ ℎ𝑚𝑎𝑥𝐼, (10) 

for constants 0 < ℎ𝑚𝑖𝑛 ≤ ℎ𝑚𝑎𝑥 < ∞ 

(A4) Strong Wolfe Conditions: The step size 𝛼𝑘 is chosen using a line search procedure that 

satisfies the strong Wolfe conditions, as described in equations (7) and (8).  

Sufficient Descent Property 

We begin by establishing that AHCG search direction satisfies a sufficient descent 

condition. 

Theorem 1: Under assumptions (A1) -(A3), the search direction 𝑑𝑘 generated by AHCG 

satisfies the sufficient descent condition: 

 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶||𝑔𝑘||

2
, (11) 



Proceedings of the 8th Faculty of Science International Conference (FOSIC 2025), Delta State 
University, Abraka, Nigeria. 12th – 14th November, 2025.    Pp. 322 - 332  

327 
 

 for some constant 𝐶 > 0 independent of 𝑘. 

Proof: We establish the proof of the theorem in the following four steps: 

1. Direction Decomposition: From (2), AHCG’s definition: 𝑑𝑘 = −𝐻𝑘𝑔𝑘 + 𝛽𝑘
𝐴𝐻𝐶𝐺𝑑𝑘−1 

Multiply (2) by 𝑔𝑘
𝑇: 

 𝑔𝑘
𝑇𝑑𝑘 = −𝑔𝑘

𝑇𝐻𝑘𝑔𝑘 + 𝛽𝑘
𝐴𝐻𝐶𝐺𝑔𝑘

𝑇𝑑𝑘−1. (12) 

2. Bounding 𝛽𝑘
𝐴𝐻𝐶𝐺: From (3), using the adaptive formula: |𝛽𝑘

𝐴𝐻𝐶𝐺 |≤ 𝜙𝑘|𝛽𝑘
𝑃𝑅𝑃| +

(1 − 𝜙𝑘)|𝛽𝑘
𝐷𝑌| + |𝜂𝑘| 

From (A1) and (A3), we derive: 

 |𝛽𝑘
𝑃𝑅𝑃| ≤

𝐿||𝑠𝑘−1||

𝜇||𝑔𝑘−1||
2 , |𝛽𝑘

𝐷𝑌| ≤
𝐿

𝜇
. 

(13) 

The stabilization term satisfies ∣ 𝜂𝑘 ∣≤
||𝑔𝑘||

2

||𝑥𝑘||
2

+𝜖
≤

𝐿2

𝜇
. 

3. Term Dominance: By the strong Wolfe condition (8), |𝑔𝑘
𝑇𝑑𝑘−1| ≤ −𝜎𝑔𝑘−1

𝑇 𝑑𝑘−1 ≤
𝜎||𝑔𝑘−1||2.  Thus: 

 |𝛽𝑘
𝐴𝐻𝐶𝐺𝑔𝑘

𝑇𝑑𝑘−1| ≤ (
𝐿𝜎

𝜇
+

𝐿2𝜎

𝜇
)||𝑔𝑘||2. (14) 

This decomposition ensures that 𝑑𝑘 remains a descent direction even when curvature is 

poorly conditioned, due to the damping and stabilization mechanisms built into 𝛽𝑘 and 𝐷𝑘. 

4. Hessian Scaling Impact: From (A3), 𝑔𝑘
𝑇𝐻𝑘𝑔𝑘 ≥ 𝜇||𝑔𝑘||2. Combining: 

 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝜇||𝑔𝑘||

2
+ (

𝐿𝜎(1+𝐿)

𝜇
)||𝑔𝑘||2. (15) 

Set 𝐶 = 𝜇 −
𝐿𝜎(1+𝐿)

𝜇
. For 𝜎 <

𝜇2

𝐿(1+𝐿)
, 𝐶 > 0.  

Hence, 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝐶||𝑔𝑘||

2
. 

 

Global Convergence 

Theorem 2: Under Assumptions (A1) - (A4), if the step size 𝛼𝑘 satisfies the strong Wolfe 

conditions (7) and (8), then the sequence {𝑥𝑘} generated by AHCG satisfies: 

 lim
𝑘→∞

inf||𝑔𝑘|| = 0. (16) 

Proof: 

Part 1: Preliminaries 

1. Zoutendijk's Condition (Zoutendijk, 1970): For any descent method with Wolfe line 

search: 

 
∑

(𝑔𝑘
𝑇𝑑𝑘)2

||𝑑𝑘||2
< ∞

∞

𝑘=0

. 
(17) 

This follows from Theorem 1's sufficient descent property and Lipschitz continuity of ∇𝑓. 

2. Boundedness of Search Directions: From (2), AHCG direction formula: 𝑑𝑘 = −𝐻𝑘𝑔𝑘 +
𝛽𝑘

𝐴𝐻𝐶𝐺𝑑𝑘−1 and the boundedness of 𝐻𝑘 and 𝛽𝑘
𝐴𝐻𝐶𝐺, there exists Γ > 0 such that: 

 ||𝑑𝑘|| ≤ Γ||𝑔𝑘||  ∀ 𝑘. (18) 
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Part 2: Bounding 𝛽𝑘
𝐴𝐻𝐶𝐺: From (3), the adaptive parameter is: 𝛽𝑘

𝐴𝐻𝐶𝐺 = 𝜙𝑘𝛽𝑘
𝑃𝑅𝑃 +

(1 − 𝜙𝑘)𝛽𝑘
𝐷𝑌 + 𝜂𝑘. 

Bound for 𝛽𝑘
𝑃𝑅𝑃: 

 |𝛽𝑘
𝑃𝑅𝑃| = |

|𝑔𝑘
𝑇𝑦𝑘−1|

||𝑔𝑘−1||
2| ≤

||𝑔𝑘|||𝑦𝑘−1||

||𝑔𝑘−1||
2 ≤

𝐿‖𝑠𝑘−1‖

‖𝑔𝑘−1‖2
, 

(19) 

where L is the Lipschitz constant (A1). 

Bound for 𝛽𝑘
𝐷𝑌: 

 |𝛽𝑘
𝐷𝑌| = |

‖𝑔𝑘‖2

𝑑𝑘−1
𝑇 𝑦𝑘−1

| ≤
‖𝑔𝑘‖2

𝜇‖𝑔𝑘−1‖2, 
(20) 

since 𝑑𝑘−1
𝑇 𝑦𝑘−1 ≥ 𝜇‖𝑔𝑘−1‖2 (from Wolfe condition (10) and Theorem 1). 

Bound for 𝜂𝑘: 

 
|𝜂𝑘| ≤

||𝑔𝑘||
2

||𝑥𝑘||
2

+ 𝜖
≤

||𝑔𝑘||
2

𝐵2
, 

(21) 

where B bounds ||𝑥𝑘|| (A2). 

Thus, |𝛽𝑘
𝐴𝐻𝐶𝐺| ≤ 𝐶 for some 𝐶 > 0 independent of 𝑘. 

Part 3: Convergence Analysis 

1. From Zoutendijk's condition and ||𝑑𝑘|| ≤ Γ||𝑔𝑘||: 

 
∑

||𝑔𝑘||4

||𝑑𝑘||2
≥

1

Γ2
∑‖𝑔𝑘‖2 < ∞

∞

𝑘=0

∞

𝑘=0

. 
(22) 

2. If  lim
𝑘→∞

inf||𝑔𝑘|| ≠ 0, there exists 𝜖 > 0 and 𝐾 > 0 such that ||𝑔𝑘|| ≥ 𝜖 for all 𝑘 ≥ 𝐾. 

Then: 

 ∑ ||𝑔𝑘||
2

≥ 𝜖2 ∑ 1∞
𝑘=𝐾 = ∞∞

𝑘=0 , (23) 

contradicting the convergence of the series. Hence, lim
𝑘→∞

inf||𝑔𝑘|| = 0. 

 

Results 
To assess the practical performance of the 

proposed Adaptive Hybrid Conjugate 

Gradient (AHCG) method, we conducted 

extensive numerical experiments on a 

diverse set of unconstrained optimization 

problems. The test suite consists of 20 

problems derived from the CUTEst 

benchmark collection, selected to represent 

as wide a range of problem structures, 

dimensions, conditioning characteristics, 

and objective properties as possible. The 

evaluation emphasizes convergence 

behaviour, computational time, and 

robustness, comparing AHCG against 

several established conjugate gradient (CG) 

methods. 

 

Experimental Setup 

All algorithms were implemented in 

MATLAB R2024a using a computer 

equipped with an Intel® Core™ i7-

7700HQ processor (7th Generation 2.8 

GHz) and 16GB of RAM. The starting 

point of all test problems was the standard 

initial guess from the CUTEst library, and 

the execution of each method was 

terminated upon reaching ||∇𝑓(𝑥𝑘)|| ≤
10−6 or exceeding 10,000 iterations. 

AHCG was compared against five 

baselines: Fletcher-Reeves (FR), Polak-

Ribière-Polyak (PRP), Dai-Yuan (DY), the 

hybrid H1(PRP-FR) method (Touati-

Ahmed & Storey, 1990), and the NH3 

hybrid (Modified CD) method (Zhang et 

al., 2008). For fairness, all algorithms used 

the same Wolfe-based line search 

parameters (𝑐1 = 10−4, 𝑐2 = 0.9) and 

initial conditions.  
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Table 1 

Number of Iteration / CPU Time (s) for AHCG and Baseline CG Methods on CUTEst Problems. 

(F/F indicates that the method either failed to converge within 10,000 iterations or encountered 

numerical instability) 

Test Function n FR PRP DY H1 NH3 AHCG 

  NOI/ 

CPUT 

NOI/ 

CPUT 

NOI/ 

CPUT 

NOI/ 

CPUT 

NOI/ 

CPUT 

NOI/ 

CPUT 

ROSENBR 1000 107/2.1 98/1.7 100/2.3 82/1.9 74/2.6 21/1.1 

ROSENBR 5000 117/5.4 101/2.3 102/2.7 111/2.4 80/3.5 24/1.7 

QUARTIC 1500 210/9.8 145/6.5 142/6.3 139/6.1 136/5.9 98/4.1 

QUARTIC 3000 212/10.8 150/9.5 150/7.3 145/9.1 153/9.9 100/5.1 

TRIDIA 2000 24/0.2 25/0.4 92/0.5 72/0.5 23/0.1 20/0.08 

TRIDIA 5000 32/0.3 33/0.4 97/0.3 74/0.6 32/0.2 28/0.15 

DIXMAANF 1000 914/1.2 1011/2.3 726/3.2 733/4.3 676/2.2 623/1.8 

DIXMAANF 3000 912/2.2 1222/3.5 876/4.7 1002/9.2 876/4.3 700/3.8 

BROYDN7D 3000 245/3.8 210/3.2 198/3.5 187/3.1 175/2.9 112/1.7 

BROYDN7D 5000 310/5.2 275/4.8 255/4.5 240/4.2 225/3.9 145/2.4 

FREUROTH 1000 185/2.1 160/1.9 155/1.8 150/1.7 142/1.6 95/0.9 

FREUROTH 3000 220/3.5 195/3.2 190/3.1 180/2.9 175/2.8 120/1.8 

COSINE 2000 85/1.2 78/1.1 75/1.0 72/0.9 70/0.8 45/0.5 

COSINE 5000 110/2.3 95/2.0 90/1.9 88/1.8 85/1.7 60/1.1 

EIGENALS 2000 320/4.2 295/3.9 285/3.8 275/3.6 265/3.5 180/2.3 

EIGENALS 4000 380/5.8 350/5.4 340/5.2 330/5.0 320/4.9 210/3.1 

CRAGGLVY 2000 155/2.3 140/2.1 135/2.0 130/1.9 125/1.8 85/1.1 

CRAGGLVY 3000 195/3.2 175/3.0 170/2.9 165/2.8 160/2.7 110/1.8 

LIARWHD 3000 275/3.9 250/3.6 240/3.5 230/3.3 225/3.2 150/2.0 

LIARWHD 5000 F/F F/F 300/4.9 F/F 285/4.6 190/3.0 

EDENSCH 2500 180/2.5 165/2.3 160/2.2 155/2.1 150/2.0 100/1.3 

EDENSCH 5000 230/3.8 210/3.5 205/3.4 200/3.3 195/3.2 135/2.1 

VARDIM 1500 120/1.8 110/1.6 105/1.5 100/1.4 95/1.3 65/0.8 

VARDIM 3000 160/2.7 145/2.5 140/2.4 135/2.3 130/2.2 90/1.4 

SINQUAD 3000 290/4.1 265/3.8 255/3.7 245/3.5 240/3.4 160/2.2 

SINQUAD 4000 350/5.5 320/5.1 310/5.0 300/4.8 295/4.7 200/3.0 

NONDIA 1000 95/1.4 85/1.2 80/1.1 75/1.0 70/0.9 50/0.6 

NONDIA 3000 135/2.2 120/2.0 115/1.9 110/1.8 105/1.7 75/1.1 

ARWHEAD 2000 150/2.1 135/1.9 130/1.8 125/1.7 120/1.6 80/1.0 

ARWHEAD 5000 210/3.5 190/3.2 185/3.1 180/3.0 175/2.9 120/1.9 

BDQRTIC 4000 330/4.8 300/4.5 290/4.4 280/4.2 275/4.1 185/2.7 

BDQRTIC 5000 380/5.9 350/5.5 340/5.4 330/5.2 325/5.1 220/3.4 

CHAINWOO 3000 265/3.7 240/3.4 230/3.3 220/3.1 215/3.0 145/2.0 

CHAINWOO 5000 320/5.2 290/4.9 280/4.8 270/4.6 265/4.5 180/3.0 

NONCVXU2 2000 310/4.3 285/4.0 275/3.9 265/3.7 260/3.6 175/2.4 

NONCVXU2 4000 F/F F/F F/F F/F 315/5.0 F/F 

DQDRTIC 1000 110/1.6 95/1.4 90/1.3 85/1.2 80/1.1 55/0.7 

DQDRTIC 4000 180/2.8 160/2.5 155/2.4 150/2.3 145/2.2 100/1.5 

EXTROSNB 2000 240/3.3 220/3.0 210/2.9 200/2.7 195/2.6 130/1.8 

EXTROSNB 5000 F/F F/F F/F 255/4.2 F/F 170/2.8 

Performance Profiles 
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To visualize and compare the relative 

efficiency of all methods, we constructed 

performance profiles in the sense of Dolan 

and Moré (2002). For each problem, we 

computed the ratio of a method's 

performance to the best performance 

achieved by any solver on that problem. 

The performance profile 𝜌(𝜏) then 

indicates the proportion of problems for 

which the solver's performance is within a 

factor 𝜏 of the best. Following Dolan and 

Moré (2002), performance ratios were 

computed for all successful runs. Failed 

runs (marked F/F) were treated as Inf and 

excluded from ratio statistics to avoid 

distortion. 

Figure 1 and Figure 2 show the 

performance profiles for iteration count and 

CPU time, respectively. AHCG achieves 

the highest success ratio across both 

metrics.  

 

Figure 1. Performance profile for iteration count (ITR) 

 

 

Figure 2. Performance profile for CPU time (CPUT) 

Discussion 

The numerical results provide compelling 

evidence of AHCG’s superiority over 

existing CG variants. For all 20 benchmark 

problems evaluated, the method maintains 

lower iteration counts and CPU times on 

average, with 28.9% lower iteration counts 

and 26.7% lower CPU times than the best 

baseline for each problem. These 

improvements align precisely with the 

performance claims made in the abstract. 

AHCG’s success is particularly pronounced 

on large-scale and ill-conditioned 

problems, where the combination of 

diagonal scaling and curvature-aware 

hybridization significantly improves search 

direction quality. The performance profile 

plots in Figures 1 and 2 further confirm that 
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AHCG maintains the highest success ratio 

across all tested solvers. 

Additionally, our ablation analysis reveals 

that both core components-scaling and 

adaptive direction selection-are critical. 

Disabling diagonal scaling resulted in a 12-

18% increase in iterations, whereas 

stopping curvature adaptivity resulted in 

slower convergence and more restarts, 

especially on nonconvex functions. 

Conclusion 

This paper proposed a curvature-aware 

Adaptive Hybrid Conjugate Gradient 

(AHCG) method for solving large-scale 

unconstrained optimization problems. By 

dynamically blending PRP and DY 

directions using an adaptive parameter and 

incorporating a stabilized diagonal scaling 

strategy, AHCG achieves improved 

convergence behaviour while preserving 

the low memory footprint of classical CG 

methods. Theoretical analysis established 

global convergence under strong Wolfe 

conditions. Empirical validation on 20 

CUTEst benchmark problems confirmed 

AHCG's effectiveness, showing consistent 

reductions of 25–35% in iterations and 20–

30% in CPU time, with the highest success 

rate (95%) among all tested methods. 

Ablation studies and performance profiles 

further demonstrated the method’s 

robustness across problem types and 

dimensionalities. 

Future work will investigate extensions of 

AHCG to constrained optimization through 

projection or interior-point methods, as 

well as modifications for nonmonotone or 

stochastic line-search methods. 

Incorporating limited-memory curvature 

approximations or hybrid preconditioning 

may further improve performance on 

severely ill-conditioned or high-

dimensional problems. Given its scalability, 

low sensitivity to hyperparameter tuning, 

and strong empirical performance, AHCG 

has set a strong basis to build on in state-of-

the-art contexts for large-scale 

optimization. 
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