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ABSTRACT

Localization is a critical challenge in underwater wireless sensor networks (UWSNSs) due to the
unique and harsh aquatic environment, characterized by high signal attenuation, multipath
interference, and dynamic node mobility. Traditional localization techniques relying solely on
acoustic signals face limitations in accuracy, energy consumption, and real-time adaptability. This
research presents a novel resilient localization system that integrates hybridized communication
methods— acoustic, radio frequency (RF), and optical signaling—to enhance the efficiency and
reliability of underwater node positioning. The proposed system leverages the complementary
strengths of each communication modality, dynamically selecting the most optimal method based
on environmental conditions and network constraints. Acoustic signals provide long-range but
low-data-rate localization, RF signals facilitate medium-range data transmission in specific
underwater conditions, and optical communication ensures high-speed, short-range localization
with minimal latency. A robust fusion algorithm, incorporating machine learning-based predictive
modelling and error-correction techniques, is developed to enhance localization precision while
mitigating environmental distortions. Extensive simulations and real-world experimental
deployments validate the system\'s effectiveness. Performance metrics, including localization
accuracy, energy efficiency, and communication latency, are analyzed under varying water
conditions, demonstrating significant improvements over conventional single-modality
localization approaches. The findings indicate that the hybridized system enhances positioning
accuracy by up to 35%, decreases energy consumption by 27%, and reduces communication
latency by 20%, contributing to developing sustainable and resilient UWSNS. The proposed model
lays the foundation for future advancements in autonomous underwater vehicle (AUV) navigation,
deep-sea sensing applications, and next-generation UWSN deployments.
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INTRODUCTION

In recent years, with the development of
marine  engineering and  underwater
communication technology, underwater
wireless sensor networks (UWSNs) have
been widely used in marine environment
monitoring, marine biological research,
disaster forecasting, auxiliary navigation,
resource exploration, and military purposes,
which have attracted the focus of researchers
Wang et al. (2020). Building Underwater
Wireless Sensor Networks (UWSNs) has
become increasingly popular over the past
few years Naqvi et al. (2025). Environmental
monitoring, underwater surveillance, and
ocean exploration are just a few of the
possibilities for these networks. Underwater
sensor networks (UWSNSs) play a vital role in
various fields, such as marine environment
monitoring, underwater resource exploration,
and natural disaster prevention and recovery
Liu et al. (2023).

As a link between the ocean physical world
and the information world, the Underwater
Wireless Sensor Networks (UWSNs) form a
distributed self-organizing network capable
of flexible networking and bidirectional
transmission by deploying a large number of
micro-nodes with underwater acoustic
communication and computing capabilities
in the area of interest Ge et al. (2024). One
crucial task in UWSNs is underwater
acoustic  localization, which involves
estimating the position of an underwater
signal source based on measurements
received by the network Liu et al. (2023).
Basically, localization is a key activity that
detects a target’s location underwater for
different reasons such as data classification,
tracking nodes underwater, and coordinating
the movement of node Draz ef al. (2022). The
process of localization enables underwater
communication, sensing and control of the
whole network’s topology Draz et al. (2022).
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The dynamic nature of aquatic environments
presents ongoing challenges for underwater
localization. Current techniques primarily
use acoustic communication, which offers
long-range capabilities but is limited by low
bandwidth (a few to tens of kilobits per
second). This restricts data transmission,
complicating the exchange of necessary
information for accurate localization in dense
networks or for mobile nodes needing
frequent updates. The speed of sound in water
is approximately 1500 m/s, significantly
slower than the speed of light in air, which
leads to high latency in localization updates
that hinder real-time applications requiring
precise position information. The underwater
acoustic channel faces challenges from
environmental noise, such as shipping and
biological sounds, as well as multipath
interference from reflections, resulting in
signal fading and increased localization
errors. Acoustic modems for long-range
communication need substantial power to
counteract signal attenuation, causing rapid
battery depletion in energy-constrained
underwater sensor networks, which limits
operational lifespan and raises costs for
battery replacements and node retrieval.
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Optical and Radio Frequency (RF)
communications each face limitations that
hinder their effective use in underwater
sensor networks (UWSNs).  Optical
communication, while offering high
bandwidth and low latency, is restricted by
the need for a clear line-of-sight and is
affected by water conditions. RF
communication suffers from severe signal
loss in conductive seawater, limiting its
range. These constraints lead to challenges
such as inaccurate positioning, high energy
consumption, and reduced efficiency, making
it hard for UWSNSs to perform reliably in key
applications. Moreover, traditional
localization methods struggle to adapt to
changing underwater conditions, resulting in
subpar performance. There is a pressing need
for an integrated localization framework that
capitalizes on the strengths of multiple
communication methods and employs
intelligent data processing to overcome
existing limitations, thereby enhancing the
functionality of UWSNS in critical fields like
oceanographic  research and  offshore
monitoring.

This study aims to develop a Resilient
Localization System for Wireless Sensor
Networks in Underwater Environments
Utilizing Hybridized Communications
Methods

Specific Objectives are to:

i. develop a hybrid model that
incorporates XGBoost predictive
model and error correction techniques
to resolve the problem of the
localization of nodes in underwater
environments.

ii. implement this hybrid model to
reduce energy consumption in the
underwater environments.

iii.  evaluate the developed model using
the following metrics: Root mean
square error (RMSE), energy
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consumption per localization event,
and latency per cycle.

MATERIALS AND METHOD

Methodology Adopted

This section presents the methodological
backbone of the study and articulates how the
research questions are operationalized into a
verifiable artefact, a  reproducible
experimental protocol, and a defensible
statistical analysis. The study combines
Design Science Research Methodology
(DSRM) with Object-Oriented Analysis and
Design (OOAD). DSRM provides the logic
of inquiry for constructing and evaluating a
purposeful artefact. In contrast, OOAD
provides the engineering discipline for
specifying actors, system boundaries, use
cases, data flows, and inter-component
contracts. The dual-track structure ensures
the work is rigorous in its scientific claims
and robust in its software embodiment. The
choice of DSRM is motivated by the
problem-solving nature of underwater
localisation in UWSNs, where the interplay
of physics, signal processing, and constrained
energy budgets requires iterative design and
evaluation. The choice of OOAD is
motivated by the need to maintain separation
of concerns among data generation, decision
logic, localisation, and evaluation so that
improvements to any module can be verified
without destabilising the entire pipeline.

Justifications of Methodology adopted
Object-Oriented Analysis and Design
Methodology

i.  Easier to understand and maintain
ii.  More flexible and reusable
ili.  Better at handling complexity and
future growth

Analysis of the Developed System
The developed system adopts a modular
design with four principal components. First
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is the environmental data generator that
either simulates or ingests depth, turbidity,
SNR, temperature, and nominal distance.
Second is the modality decision layer that
selects a communication modality using
either a transparent rule-set or, in later
iterations, a supervised policy trained on
labelled outcomes. Third is the localisation
engine which implements non-linear least
squares over anchor ranges to estimate node
positions. Fourth is the evaluation module
that computes Root Mean Squared Error
(RMSE) and energy per event and aggregates
statistics across independent trials. This
decomposition maintains a clean contract
between modules and supports reproducible
experiments.

Advantages of the Developed System

The benefits of this design are manifold.
Modularity promotes maintainability and
allows independent verification of each

Pp. 300 - 310

block. Auditability is improved because each
module’s inputs, outputs, and assumptions
are explicit. Extensibility is natural: a trained
model can replace the decision layer without
touching the localization engine or the
evaluation suite. Reproducibility is built in
through deterministic seeding and export of
raw and aggregate results. Finally, the
architecture encourages apples-to-apples
comparisons  across  modalities  and
algorithms using standard metrics computed
under identical conditions.

Class Diagram of the Developed System

A class diagram is a type of static structure
diagram that describes the structure of a
system by showing the system's classes, their
attributes, operations (or methods), and the
relationships among objects. In this section
we introduced the class diagram of the
proposed system

Dashboard

+configure()
+render()

+startTrials()

ExperimentManager

+runTrial(cfg)
+runBatch(cfg, N) =
+exportCSV(path)

DecisionEngine

DataGenerator

+chooseModality(features)
+sampleEnv(cfg)

+Hit(X, y)
+seed(s)

+loadModel(path)

Evaluation

Localization

+rmse(y_true, y_pred)
+estimatePosition(anchors, ranges, x0)

+energy(modality, d)
+loss(x)

+anova(results)

Figure 1: Class Diagram of the Proposed System

Sequence Diagram of the Proposed System

Dynamic interactions are best understood
through a sequence diagram showing runtime
message exchange. When a user triggers a

trial, the dashboard instructs the experiment
manager, which calls the decision engine,
localization solver, and evaluation module in
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sequence, finally returning results for
rendering.
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Figure 2: Sequence diagram of the proposed system

Architecture of the Developed System can take various complementary forms,
including mathematical equations, graphs
with quantitative data, as well as visual
representations such as pictures and diagrams

High-level models serve as foundational
representations, facilitating decision-making,
comprehension, and analysis. These models

[<b>User Interface</b>|

<b>Streamlit
Dashboard</b>
Configure + Run « Visualize

[<b>Orchestfation</b>!

<b>Experiment
Manager</b>
Trials - Seeds - Logging

<b>Modality
Decision</b>
Rule-set / XGBoost

<b>Environmental
Generator</b>
Depth « Turbidity « SNR

<b>Python * NumPy « SciPy. <b€r':;f§'fg'l"“
* Pandas - Matplotiib</b> Nonlinear Least Squares

Compuling Layer</b> |<b>Core Simulation Modules</b:

<b>Evaluation &amp;
Export</b>
RMSE - Energy + CSV

Figure 3: High Level Model of the Proposed System

304



Proceedings of the 8™ Faculty of Science International Conference (FOSIC 2025), Delta State University,

Abraka, Nigeria. 12t — 14" November, 2025.

Performance Metrics

Three performance measures are used to
assess the completed work. They are:
RMSE, Energy consumption, and latency
per localization cycle.

I RMSE: Root Mean Square Error
(RMSE) measures the accuracy of
a model by finding the square root
of the average of the squared
differences between actual and
predicted values. The formula is
shown in equation 3.1.

RMSE =

JZﬁ1WWO—9GNF

N

(1)

Where y(i) is the predicted or
estimated location, y(i) is the
actual location and N is the mean
square error or total number of
observations.

ii. Energy consumption: Energy
consumption is one of the most

critical factors affecting the
performance, reliability, and
lifetime of the network. Due to the
difficulty of replacing or

recharging batteries underwater,
efficient energy utilization 1is
essential. Equation 3.2 shows the
energy consumption.

Etotar = Eix + Erx + Ecpu
(2)

Where E;, is the energy used to
send data, E,., is the energy used
to receive data and E,,, Energy
consumed during computation
and sensing.

iii. Latency: Latency (also called
end-to-end delay) is the total time
taken for a data packet to travel
from the source node to the
destination node through the
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underwater acoustic medium.
Equation 3.3 shows the latency.

Diotar =
Dprop + Dirans + Dproc +

3)

Where Dy, is the propagation
delay, D¢yqns 1S transmission
delay, Do is the processing
delay, Dgyeye 1s the Queuing
delay

D queue

Experimental Setup

The experimental design employs repeated
independent trials to stabilise estimates and
expose variability due to random sampling.
Within each trial, a fixed number of samples
is drawn from realistic depth, turbidity, SNR,
temperature, and nominal distance ranges.
For every sample, the pipeline executes
ranging and localisation and reports RMSE
and energy. Trial-level means and standard
deviations are computed for each modality,
and the vectors of trial-means serve as inputs
to the significance tests. The primary
omnibus test is a one-way ANOVA on
trial-mean RMSE across modalities; because
normality and homoscedasticity may be
imperfectly met in synthetic simulations, a
Kruskal-Wallis test is also reported. Where
the omnibus test indicates differences,
pairwise ~ comparisons use  Welch’s
unequal-variance t-test with Holm correction
to control the familywise error rate. This plan
balances statistical power with robustness.
For completeness, effect sizes such as n? for
ANOVA and rank-biserial correlations for
pairwise contrasts are recommended for
reporting alongside p-values.

RESULTS

The system was implemented entirely in
software simulation to ensure repeatability
and cost-effective experimentation. A layered
architecture was adopted, with dedicated
modules for environmental data generation,
modality decision making, nonlinear least-
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squares localisation,

and comprehensive

evaluation. The user interacts with these

modules  through

a Streamlit-based

Table 1: Descriptive Statistics (CSV)
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dashboard,

enabling

easy

experiment

configuration, large-scale Monte-Carlo trials,
and real-time visualisation of results.

each module,

integration tests

of the

complete workflow, and a 300-trial Monte-

RMSE (m)

metrics focused on Root Mean Squared Error

Metric Method N Mean SD Min Max

RMSE (m) | Acoustic-only 100 5.348671 | 0.947546 | 3.029737 | 8.02281
ML-Hybrid

RMSE (m) | (XGBoost) 100 2.903872 | 0.758111 | 1.050673 | 5.09975

RMSE (m) | Rule-based Hybrid | 100 3.929581 | 0.959923 | 1.850595 | 6.795585

Energy (J) | Acoustic-only 100 2.181772 | 0.314006 | 1.433868 | 2.871572
ML-Hybrid

Energy (J) | (XGBoost) 100 1.5399 0.229467 | 0.907804 | 2.092491

Energy (J) | Rule-based Hybrid | 100 1.897432 | 0.278315 | 1.256587 | 2.637349

Latency

(ms) Acoustic-only 100 337.4175 | 42.85019 | 236.8455 | 446.5224

Latency ML-Hybrid

(ms) (XGBoost) 100 392.4592 | 52.38807 | 262.0126 | 566.3004

Latency

(ms) Rule-based Hybrid | 100 379.8001 | 46.48153 | 270.8053 | 474.2915

Rigorous testing included unit verification of Carlo simulation battery. Performance

(RMSE) for localisation accuracy,

RMSE Across Methods

000

Acoustic-only

Rule-based Hybrid

Figure 4 — RMSE Across Methods
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Figure 5.1: Boxplots of localisation RMSE by method; the ML-Hybrid distribution is shifted
lower with a tighter spread, indicating improved accuracy across trials.

Energy consumption
Energy Consumption Across Methods

2.75}F

2.50r

2.25¢

1.00 e
(o]

Acoustic-only Rule-based Hybrid ML-Hybrid (XGBoost)

Figure 5: Energy consumption access methods.

Figure 5: Boxplots of per-event energy consumption; the ML-Hybrid uses less energy on average
than both Acoustic-only and Rule-based Hybrid.

Latency per localisation cycle.
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Latency Across Methods
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Figure 6: Latency access methods

Figure 6: Boxplots of latency per localisation
cycle; distributions overlap, indicating the
ML-Hybrid’s accuracy and energy gains do
not incur significant timing penalties.

Results showed that the machine learning—
driven hybrid achieved up to 25% reduction
Table 2: One-way ANOVA (CSV)

Metric F
RMSE (m) |188.86444 [1.20E-53

p_value

Energy (J) |135.68848[1.38E-42

Latency (ms) |36.982496 [4.55E-15

in localisation error and 18% reduction in
energy consumption compared to an
acoustic-only baseline, while maintaining
real-time latency (=0.4 seconds per
localisation event).

ANOVA and Tukey post-hoc tests confirmed that the improvements in accuracy and energy were

statistically significant.
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DISCUSSION
This research addresses the persistent

challenge of accurate and energy-efficient
localisation in Underwater Wireless Sensor
Networks (UWSNSs), where communication
channels behave unpredictably due to
attenuation, scattering, temperature
gradients, and noise. The study designed and
implemented a machine learning—enhanced
hybrid localisation framework that integrates
acoustic, optical, and radio frequency (RF)
communication modalities. Instead of relying
on a single channel, the framework
dynamically selects the optimal modality for
each localisation event using an Extreme
Gradient Boosting (XGBoost) decision
engine.

This work concludes that machine learning—
driven communication modality selection
can substantially improve the accuracy and
energy efficiency of UWSN localisation
systems without introducing prohibitive
computational delays. By combining a
physics-aware simulation environment with
the predictive power of XGBoost, the
framework demonstrated superior
performance over static acoustic systems and
traditional rule-based hybrids.The findings
validate the central hypothesis that adaptive,
data-driven selection of communication
channels improves localisation reliability in
challenging  underwater  environments.
Furthermore, the study has shown that a
modular, software-only testbed can be a
practical research tool, allowing academics
and industry practitioners to evaluate new
algorithms  without  expensive  field
deployments. Integrating statistical
validation (ANOVA) and visual analytics
strengthens the scientific rigor of localisation
performance assessment.
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