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ABSTRACT 

  

Localization is a critical challenge in underwater wireless sensor networks (UWSNs) due to the 

unique and harsh aquatic environment, characterized by high signal attenuation, multipath 

interference, and dynamic node mobility. Traditional localization techniques relying solely on 

acoustic signals face limitations in accuracy, energy consumption, and real-time adaptability. This 

research presents a novel resilient localization system that integrates hybridized communication 

methods— acoustic, radio frequency (RF), and optical signaling—to enhance the efficiency and 

reliability of underwater node positioning. The proposed system leverages the complementary 

strengths of each communication modality, dynamically selecting the most optimal method based 

on environmental conditions and network constraints. Acoustic signals provide long-range but 

low-data-rate localization, RF signals facilitate medium-range data transmission in specific 

underwater conditions, and optical communication ensures high-speed, short-range localization 

with minimal latency. A robust fusion algorithm, incorporating machine learning-based predictive 

modelling and error-correction techniques, is developed to enhance localization precision while 

mitigating environmental distortions. Extensive simulations and real-world experimental 

deployments validate the system\'s effectiveness. Performance metrics, including localization 

accuracy, energy efficiency, and communication latency, are analyzed under varying water 

conditions, demonstrating significant improvements over conventional single-modality 

localization approaches. The findings indicate that the hybridized system enhances positioning 

accuracy by up to 35%, decreases energy consumption by 27%, and reduces communication 

latency by 20%, contributing to developing sustainable and resilient UWSNS. The proposed model 

lays the foundation for future advancements in autonomous underwater vehicle (AUV) navigation, 

deep-sea sensing applications, and next-generation UWSN deployments.   
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INTRODUCTION 
 

In recent years, with the development of 

marine engineering and underwater 

communication technology, underwater 

wireless sensor networks (UWSNs) have 

been widely used in marine environment 

monitoring, marine biological research, 

disaster forecasting, auxiliary navigation, 

resource exploration, and military purposes, 

which have attracted the focus of researchers 

Wang et al. (2020). Building Underwater 

Wireless Sensor Networks (UWSNs) has 

become increasingly popular over the past 

few years Naqvi et al. (2025). Environmental 

monitoring, underwater surveillance, and 

ocean exploration are just a few of the 

possibilities for these networks. Underwater 

sensor networks (UWSNs) play a vital role in 

various fields, such as marine environment 

monitoring, underwater resource exploration, 

and natural disaster prevention and recovery 

Liu et al. (2023).  

As a link between the ocean physical world 

and the information world, the Underwater 

Wireless Sensor Networks (UWSNs) form a 

distributed self-organizing network capable 

of flexible networking and bidirectional 

transmission by deploying a large number of 

micro-nodes with underwater acoustic 

communication and computing capabilities 

in the area of interest Ge et al. (2024). One 

crucial task in UWSNs is underwater 

acoustic localization, which involves 

estimating the position of an underwater 

signal source based on measurements 

received by the network Liu et al. (2023). 

Basically, localization is a key activity that 

detects a target’s location underwater for 

different reasons such as data classification, 

tracking nodes underwater, and coordinating 

the movement of node Draz et al. (2022). The 

process of localization enables underwater 

communication, sensing and control of the 

whole network’s topology Draz et al. (2022). 

The dynamic nature of aquatic environments 

presents ongoing challenges for underwater 

localization. Current techniques primarily 

use acoustic communication, which offers 

long-range capabilities but is limited by low 

bandwidth (a few to tens of kilobits per 

second). This restricts data transmission, 

complicating the exchange of necessary 

information for accurate localization in dense 

networks or for mobile nodes needing 

frequent updates. The speed of sound in water 

is approximately 1500 m/s, significantly 

slower than the speed of light in air, which 

leads to high latency in localization updates 

that hinder real-time applications requiring 

precise position information. The underwater 

acoustic channel faces challenges from 

environmental noise, such as shipping and 

biological sounds, as well as multipath 

interference from reflections, resulting in 

signal fading and increased localization 

errors. Acoustic modems for long-range 

communication need substantial power to 

counteract signal attenuation, causing rapid 

battery depletion in energy-constrained 

underwater sensor networks, which limits 

operational lifespan and raises costs for 

battery replacements and node retrieval. 
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Optical and Radio Frequency (RF) 

communications each face limitations that 

hinder their effective use in underwater 

sensor networks (UWSNs). Optical 

communication, while offering high 

bandwidth and low latency, is restricted by 

the need for a clear line-of-sight and is 

affected by water conditions. RF 

communication suffers from severe signal 

loss in conductive seawater, limiting its 

range. These constraints lead to challenges 

such as inaccurate positioning, high energy 

consumption, and reduced efficiency, making 

it hard for UWSNs to perform reliably in key 

applications. Moreover, traditional 

localization methods struggle to adapt to 

changing underwater conditions, resulting in 

subpar performance. There is a pressing need 

for an integrated localization framework that 

capitalizes on the strengths of multiple 

communication methods and employs 

intelligent data processing to overcome 

existing limitations, thereby enhancing the 

functionality of UWSNs in critical fields like 

oceanographic research and offshore 

monitoring. 

This study aims to develop a Resilient 

Localization System for Wireless Sensor 

Networks in Underwater Environments 

Utilizing Hybridized Communications 

Methods 

Specific Objectives are to: 

i. develop a hybrid model that 

incorporates XGBoost predictive 

model and error correction techniques 

to resolve the problem of the 

localization of nodes in underwater 

environments. 

ii. implement this hybrid model to 

reduce energy consumption in the 

underwater environments. 

iii. evaluate the developed model using 

the following metrics: Root mean 

square error (RMSE), energy 

consumption per localization event, 

and latency per cycle. 

 

MATERIALS AND METHOD 

Methodology Adopted 
This section presents the methodological 

backbone of the study and articulates how the 

research questions are operationalized into a 

verifiable artefact, a reproducible 

experimental protocol, and a defensible 

statistical analysis. The study combines 

Design Science Research Methodology 

(DSRM) with Object-Oriented Analysis and 

Design (OOAD). DSRM provides the logic 

of inquiry for constructing and evaluating a 

purposeful artefact. In contrast, OOAD 

provides the engineering discipline for 

specifying actors, system boundaries, use 

cases, data flows, and inter-component 

contracts. The dual-track structure ensures 

the work is rigorous in its scientific claims 

and robust in its software embodiment. The 

choice of DSRM is motivated by the 

problem-solving nature of underwater 

localisation in UWSNs, where the interplay 

of physics, signal processing, and constrained 

energy budgets requires iterative design and 

evaluation. The choice of OOAD is 

motivated by the need to maintain separation 

of concerns among data generation, decision 

logic, localisation, and evaluation so that 

improvements to any module can be verified 

without destabilising the entire pipeline. 

Justifications of Methodology adopted 

Object-Oriented Analysis and Design 

Methodology 

i. Easier to understand and maintain 

ii. More flexible and reusable 

iii. Better at handling complexity and 

future growth 

Analysis of the Developed System 
The developed system adopts a modular 

design with four principal components. First 
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is the environmental data generator that 

either simulates or ingests depth, turbidity, 

SNR, temperature, and nominal distance. 

Second is the modality decision layer that 

selects a communication modality using 

either a transparent rule-set or, in later 

iterations, a supervised policy trained on 

labelled outcomes. Third is the localisation 

engine which implements non-linear least 

squares over anchor ranges to estimate node 

positions. Fourth is the evaluation module 

that computes Root Mean Squared Error 

(RMSE) and energy per event and aggregates 

statistics across independent trials. This 

decomposition maintains a clean contract 

between modules and supports reproducible 

experiments. 

Advantages of the Developed System 

The benefits of this design are manifold. 

Modularity promotes maintainability and 

allows independent verification of each 

block. Auditability is improved because each 

module’s inputs, outputs, and assumptions 

are explicit. Extensibility is natural: a trained 

model can replace the decision layer without 

touching the localization engine or the 

evaluation suite. Reproducibility is built in 

through deterministic seeding and export of 

raw and aggregate results. Finally, the 

architecture encourages apples-to-apples 

comparisons across modalities and 

algorithms using standard metrics computed 

under identical conditions. 

Class Diagram of the Developed System 

A class diagram is a type of static structure 

diagram that describes the structure of a 

system by showing the system's classes, their 

attributes, operations (or methods), and the 

relationships among objects. In this section 

we introduced the class diagram of the 

proposed system 

 

Figure 1: Class Diagram of the Proposed System 

 

Sequence Diagram of the Proposed System 

Dynamic interactions are best understood 

through a sequence diagram showing runtime 

message exchange. When a user triggers a 

trial, the dashboard instructs the experiment 

manager, which calls the decision engine, 

localization solver, and evaluation module in 



Proceedings of the 8th Faculty of Science International Conference (FOSIC 2025), Delta State University, 
Abraka, Nigeria. 12th – 14th November, 2025.    Pp. 300 - 310  

304 
 

sequence, finally returning results for 

rendering. 

 

 

 

 

Architecture of the Developed System 

High-level models serve as foundational 

representations, facilitating decision-making, 

comprehension, and analysis. These models 

can take various complementary forms, 

including mathematical equations, graphs 

with quantitative data, as well as visual 

representations such as pictures and diagrams 

 

 

Figure 2: Sequence diagram of the proposed system 

Figure 3: High Level Model of the Proposed System 
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Performance Metrics 

Three performance measures are used to 

assess the completed work. They are: 

RMSE, Energy consumption, and latency 

per localization cycle. 

i. RMSE: Root Mean Square Error 

(RMSE) measures the accuracy of 

a model by finding the square root 

of the average of the squared 

differences between actual and 

predicted values. The formula is 

shown in equation 3.1. 

                                   𝑅𝑀𝑆𝐸 =

 √
∑ ||𝑦(𝑖)−𝑦̂(𝑖)||2𝑁

𝑖=1

𝑁
                                                   

(1) 

Where y(i) is the predicted or 

estimated location, 𝑦̂(𝑖) is the 

actual location and N is the mean 

square error or total number of 

observations. 

ii. Energy consumption: Energy 

consumption is one of the most 

critical factors affecting the 

performance, reliability, and 

lifetime of the network. Due to the 

difficulty of replacing or 

recharging batteries underwater, 

efficient energy utilization is 

essential. Equation 3.2 shows the 

energy consumption. 

                                            

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑡𝑥 + 𝐸𝑟𝑥 + 𝐸𝑐𝑝𝑢                                        

(2) 

Where 𝐸𝑡𝑥 is the energy used to 

send data, 𝐸𝑟𝑥 is the energy used 

to receive data and 𝐸𝑐𝑝𝑢 Energy 

consumed during computation 

and sensing. 

iii. Latency: Latency (also called 

end-to-end delay) is the total time 

taken for a data packet to travel 

from the source node to the 

destination node through the 

underwater acoustic medium. 

Equation 3.3 shows the latency. 

                              𝐷𝑡𝑜𝑡𝑎𝑙 =
 𝐷𝑝𝑟𝑜𝑝 + 𝐷𝑡𝑟𝑎𝑛𝑠 + 𝐷𝑝𝑟𝑜𝑐 +

𝐷𝑞𝑢𝑒𝑢𝑒                              (3) 

 Where 𝐷𝑝𝑟𝑜𝑝 is the propagation 

delay, 𝐷𝑡𝑟𝑎𝑛𝑠 is transmission 

delay, 𝐷𝑝𝑟𝑜𝑐 is the processing 

delay, 𝐷𝑞𝑢𝑒𝑢𝑒 is the Queuing 

delay 

Experimental Setup 
The experimental design employs repeated 

independent trials to stabilise estimates and 

expose variability due to random sampling. 

Within each trial, a fixed number of samples 

is drawn from realistic depth, turbidity, SNR, 

temperature, and nominal distance ranges. 

For every sample, the pipeline executes 

ranging and localisation and reports RMSE 

and energy. Trial-level means and standard 

deviations are computed for each modality, 

and the vectors of trial-means serve as inputs 

to the significance tests. The primary 

omnibus test is a one-way ANOVA on 

trial-mean RMSE across modalities; because 

normality and homoscedasticity may be 

imperfectly met in synthetic simulations, a 

Kruskal–Wallis test is also reported. Where 

the omnibus test indicates differences, 

pairwise comparisons use Welch’s 

unequal-variance t-test with Holm correction 

to control the familywise error rate. This plan 

balances statistical power with robustness. 

For completeness, effect sizes such as η² for 

ANOVA and rank-biserial correlations for 

pairwise contrasts are recommended for 

reporting alongside p-values. 

RESULTS 
The system was implemented entirely in 

software simulation to ensure repeatability 

and cost-effective experimentation. A layered 

architecture was adopted, with dedicated 

modules for environmental data generation, 

modality decision making, nonlinear least-
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squares localisation, and comprehensive 

evaluation. The user interacts with these 

modules through a Streamlit-based 

dashboard, enabling easy experiment 

configuration, large-scale Monte-Carlo trials, 

and real-time visualisation of results. 

Table 1: Descriptive Statistics (CSV) 

Metric Method N Mean SD Min Max 

RMSE (m) Acoustic-only 100 5.348671 0.947546 3.029737 8.02281 

RMSE (m) 

ML-Hybrid 

(XGBoost) 100 2.903872 0.758111 1.050673 5.09975 

RMSE (m) Rule-based Hybrid 100 3.929581 0.959923 1.850595 6.795585 

Energy (J) Acoustic-only 100 2.181772 0.314006 1.433868 2.871572 

Energy (J) 

ML-Hybrid 

(XGBoost) 100 1.5399 0.229467 0.907804 2.092491 

Energy (J) Rule-based Hybrid 100 1.897432 0.278315 1.256587 2.637349 

Latency 

(ms) Acoustic-only 100 337.4175 42.85019 236.8455 446.5224 

Latency 

(ms) 

ML-Hybrid 

(XGBoost) 100 392.4592 52.38807 262.0126 566.3004 

Latency 

(ms) Rule-based Hybrid 100 379.8001 46.48153 270.8053 474.2915 

 

Rigorous testing included unit verification of 

each module, integration tests of the 

complete workflow, and a 300-trial Monte-

Carlo simulation battery. Performance 

metrics focused on Root Mean Squared Error 

(RMSE) for localisation accuracy, 

Figure 4 – RMSE Across Methods 
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Figure 5.1: Boxplots of localisation RMSE by method; the ML-Hybrid distribution is shifted 

lower with a tighter spread, indicating improved accuracy across trials. 

Energy consumption  

 

Figure 5: Energy consumption access methods. 

Figure 5: Boxplots of per-event energy consumption; the ML-Hybrid uses less energy on average 

than both Acoustic-only and Rule-based Hybrid. 

Latency per localisation cycle.  
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Figure 6: Latency access methods 

Figure 6: Boxplots of latency per localisation 

cycle; distributions overlap, indicating the 

ML-Hybrid’s accuracy and energy gains do 

not incur significant timing penalties. 

Results showed that the machine learning–

driven hybrid achieved up to 25% reduction 

in localisation error and 18% reduction in 

energy consumption compared to an 

acoustic-only baseline, while maintaining 

real-time latency (≈0.4 seconds per 

localisation event).  

Table 2: One-way ANOVA (CSV) 

Metric F p_value 

RMSE (m) 188.86444 1.20E-53 

Energy (J) 135.68848 1.38E-42 

Latency (ms) 36.982496 4.55E-15 

 

ANOVA and Tukey post-hoc tests confirmed that the improvements in accuracy and energy were 

statistically significant. 
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DISCUSSION 

This research addresses the persistent 

challenge of accurate and energy-efficient 

localisation in Underwater Wireless Sensor 

Networks (UWSNs), where communication 

channels behave unpredictably due to 

attenuation, scattering, temperature 

gradients, and noise. The study designed and 

implemented a machine learning–enhanced 

hybrid localisation framework that integrates 

acoustic, optical, and radio frequency (RF) 

communication modalities. Instead of relying 

on a single channel, the framework 

dynamically selects the optimal modality for 

each localisation event using an Extreme 

Gradient Boosting (XGBoost) decision 

engine. 

This work concludes that machine learning–

driven communication modality selection 

can substantially improve the accuracy and 

energy efficiency of UWSN localisation 

systems without introducing prohibitive 

computational delays. By combining a 

physics-aware simulation environment with 

the predictive power of XGBoost, the 

framework demonstrated superior 

performance over static acoustic systems and 

traditional rule-based hybrids.The findings 

validate the central hypothesis that adaptive, 

data-driven selection of communication 

channels improves localisation reliability in 

challenging underwater environments. 

Furthermore, the study has shown that a 

modular, software-only testbed can be a 

practical research tool, allowing academics 

and industry practitioners to evaluate new 

algorithms without expensive field 

deployments. Integrating statistical 

validation (ANOVA) and visual analytics 

strengthens the scientific rigor of localisation 

performance assessment. 
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