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Abstract 

We present an AI-augmented, multi-scale framework integrating fractional calculus, Petrov–

Galerkin spectral element modeling (PG-SEM), and machine learning to transform conventional 

emission control into a resource-recovery and circular-utilization platform. The system is governed 

by distributed-order fractional variable-order stochastic space-time PDEs, capturing memory, 

heterogeneity, and nonlocal behavior often missed by traditional models. Fractional formulations 

improve predictive accuracy by 30 − 50%, while PG-SEM delivers spectral precision with up to 

two-order-of-magnitude computational speedups. Coupled with Fractional Swing Adsorption 

(FSA), sorbent utilization increases by 25 − 45%, and AI-driven surrogate control reduces energy 

demand by 15 − 30%. Experimental validation shows 85 − 98% 𝐶𝑂2 and hydrocarbon capture, 

70 − 90% waste-to-fuel conversion, and methane purity above 85%, enabling payback periods of 

2 − 7 years. Integration of advanced mathematics with AI transforms gas flare capture efficiency 

from 72% to 87.4%, generating $2.2𝑀 annual profit per facility while preventing 75 deaths 

yearly. Scalable from 10 𝑘𝑔/ℎ prototypes to > 100,000 𝑁𝑚³/ℎ industrial systems, the 

framework could mitigate 400 − 600 Mt 𝐶𝑂2-equivalent annually, representing a $50 − 100 

billion global opportunities. 

Keywords: Fractional calculus, NNHG functions, SAMUIG operator, Power swing adsorption 

Artificial intelligence. 
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Fractional calculus extends classical 

concepts of differentiation and integration to 

non-integer orders, offering a powerful and 

flexible mathematical framework for 

modeling complex physical phenomena. Its 

ability to capture hereditary responses, long-

range memory, anomalous diffusion, and 

nonlocal interactions makes it indispensable 

for modeling systems in which classical 

integer-order models systematically fail, 

particularly atmospheric pollutant dispersion, 

heterogeneous reaction–diffusion processes, 

and electromagnetic wave propagation in 

irregular media (Podlubny, 1999; Kilbas et 

al., 2006; Baleanu et al., 2012). At the core of 

fractional calculus lies the gamma function, 

whose analytical properties determine the 

scaling and behavior of most fractional 

operators. Through Stirling-type asymptotic 

expansions formalized by Euler (1740) and 

extensively analyzed in modern fractional 

frameworks (Diethelm, 2010), 

                                 𝛤(𝑥) = ∫ 𝑡1−𝑥𝑒𝑡𝑑𝑡

∞

0

,    𝛤(𝑥) ∼ √2𝜋𝑥 (
𝑥

𝑒
)
𝑥

,                                        (1) 

the magnitude of 𝛤(𝑥) increases so rapidly 

that values such as 𝛤(150) ≈ 9.43 × 10260 

surpass representational limits of standard 

double-precision arithmetic (1.798 ×

10308). As shown by Diethelm (2010), Li & 

Zeng (2015), and Garrappa (2011), this 

explosive growth produces conditioning 

numbers exceeding 1015, which makes high 

order spectral formulations that are otherwise 

preferred for accurate multiscale simulations 

numerically unstable and in many cases 

unusable in practice. This computational 

bottleneck has long hindered the deployment 

of fractional operators in large-scale multi-

physics simulations involving gas transport, 

multicomponent chemical reactions, and 

adsorption–desorption dynamics in porous 

media. This limitation is particularly 

consequential for environmental and energy 

systems. Elvidge et al. (2016) reported that 
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industrial gas flaring releases more than 140 

billion cubic meters of gas annually, 

exacerbating greenhouse emissions and 

economic losses. Traditional capture and 

conversion systems described using integer-

order differential equations, such as those 

analyzed by Rahimpour and Jokar (2012), 

struggle to represent the coupled physics of 

turbulent atmospheric dispersion, non-

Fickian transport through microporous 

adsorbents, and electromagnetic stabilization 

in plasma-assisted conversion units. As 

shown by Grande and Rodrigues (2005) and 

supported by more recent atmospheric 

chemistry assessments (Edwards et al., 

2023), these classical formulations typically 

achieve only about 72% capture efficiency, 

with breakthrough prediction errors 

exceeding 21%, resulting in substantial 

methane slip, reduced process reliability, and 

missed opportunities for resource recovery. 

Recent advances in fractional operator design 

and extended calculus formulations provide a 

foundation for addressing these limitations. 

The introduction of generalized operator 

families and non-singular kernels (Atangana 

and Koca, 2016; Odibat and Shawagfeh, 

2007) has stimulated new research pathways 

for constructing more stable and physically 

consistent differential operators. In parallel, 

modern applications of fractional calculus in 

complex multi-physics environments; 

spanning biological tissues (Magin, 2012) to 

nonlinear control systems and real-world 

engineering processes (Sun et al., 2018), 

demonstrate its versatility and the urgent 

need for numerically stable formulations. 

The present work responds to these long-

standing challenges by introducing three 

primary contributions. First, inspired by 

contemporary numerical-stability strategies 

(Garrappa, 2011; Atangana and Koca, 2016), 

we develop the Nwani–Njoseh Hybrid 

Gamma (NNHG) function family to 

regularize fractional operators and eliminate 

the catastrophic growth associated with 
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classical gamma-based kernels. Second, 

extending unified-operator approaches such 

as those in Sun et al. (2018), we construct the 

SAMUIG unified fractional operator, which 

synthesizes multiple competing definitions of 

fractional differentiation through adaptive, 

data-driven weighting designed for multi-

physics environments. Third, building on 

pioneering artificial-intelligence-assisted 

differential-equation solvers (Raissi, 

Perdikaris and Karniadakis, 2019), we embed 

a five-layer AI architecture that accelerates 

fractional computations, improves operator 

learning, and enables real-time optimization 

of gas-capture and emission-conversion 

systems. 

Together, these innovations form a 

mathematically rigorous and 

computationally efficient foundation for 

next-generation resource-recovery 

technologies targeting industrial flaring, 

atmospheric emissions, and advanced 

adsorption–conversion platforms. 

Materials and Methods 

Following the numerical stability framework 

of Garrappa (2015), we introduce the Nwani–

Njoseh Hybrid Gamma (NNHG) function as 

a stable alternative to the classical gamma-

based kernels used in fractional operators. Its 

direct form, 

                                          𝑁𝑁𝐻𝐺𝑑𝑖𝑟𝑒𝑐𝑡(𝑥, 𝑏, 𝛼, 𝛽, 𝑘) =
[𝛤(𝑥)]𝛼

𝑏𝑥(1+𝑏−𝑘𝑥)
𝛽 ,                                              (2) 

and the log-stable form, 

            𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(𝑥, 𝑏, 𝛼, 𝛽, 𝑘) = 𝑒𝑥𝑝{𝛼 log𝛤(𝑥) − 𝑥 log𝑏 − 𝛽 log[1 + exp(−𝑘𝑥 log 𝑏)]}, (3) 

replaces the Stirling-type asymptotics of 

𝛤(𝑥), suppressing uncontrolled factorial 

growth while retaining essential scaling. 

Building on this stable foundation, we define 

the Synthetic Adaptive Multi-Scale Unified 

Integrated Generalized (SAMUIG) fractional 

operator as a convex combination of 
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established Riemann–Liouville, Caputo, and 

Atangana–Baleanu derivatives: 

     𝒟𝑎
𝑆𝐴𝑀𝑈𝐼𝐺

𝑡,𝛾
𝛼 [𝑢](𝑡) = 𝜔1(𝛼, 𝛽𝑤) 𝒟𝑎

𝑅𝐿
𝑡
𝛼𝑢 + 𝜔2(𝛼, 𝛽𝑤) 𝒟𝑎

𝐶
𝑡
𝛼𝑢 + 𝜔3(𝛼, 𝛽𝑤) 𝒟𝑎

𝐴𝐵
𝑡
𝛼𝑢 + 𝐾𝛾𝑢,      (4) 

with weights 𝜔𝑖(𝛼, 𝛽𝑤) defined through a 

log-sum-exp normalization, ensuring 

smoothness, positivity and unity 

normalization. The SAMUIG kernel follows 

Mainardi’s (2010) framework: 

𝐾𝛾𝑢(𝑥, 𝑦, 𝑡) = 𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(|𝑥 − 𝑦|, 𝛾𝑠, 𝛼𝑠, 𝛽𝑠, 𝑘𝑠)𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(𝑡, 𝛾𝑡, 𝛼𝑡, 𝛽𝑡, 𝑘𝑡)𝑒
[−
|𝑥−𝑦|2

𝐿𝑠
2 +

𝑡2

𝑇𝑐
2]
, (5) 

evaluated completely in log-space to preserve 

stability. Spatial and temporal correlation 

scales 𝐿𝑠  =  2.3 𝑚𝑚 and 𝑇𝑐  =  18.5 𝑠 are 

obtained from variogram and autocorrelation 

analyses. The resulting nonlocal operator is  

𝐷𝑆𝐴𝑀𝑈𝐼𝐺
𝛼 [𝑢(𝑥, 𝑡)] = ∫∫𝐾𝛾𝑢(𝑥, 𝑦, 𝑡 − 𝜏) [𝜔1(𝒟1) + 𝜔2(𝒟2) + 𝜔3(𝒟3)]𝑢(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏,        (6) 

providing a tunable, self-regularizing 

nonlocal formulation via NNHG-weighted 

kernels. 

We define SAMUIG fractional spaces as 

NNHG-enhanced analogues of Sobolev, 

Besov, and Triebel–Lizorkin spaces. For 𝛺 ⊂

ℝ𝑛, order 𝑠 ∈ ℝ, and 𝑝 ∈ [1,∞), the 

Sobolev-type norm is 

           ‖𝑢‖𝒲𝑆𝐴𝑀𝑈𝐼𝐺
𝑠,𝑝 = (∫|𝑢|𝑝

𝛺

𝑑𝑥 + ∫ ∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(|𝑥 − 𝑦|, 𝑏𝑠, 𝑠, 𝛽𝑠, 𝑘𝑠)
𝑑𝑥𝑑𝑦

𝛺𝛺

)

1
𝑝

,           (7) 

while the Besov and Triebel–Lizorkin norms incorporate NNHG-weighted smoothness terms: 

         ‖𝑢‖ℬ𝑝,𝑞,𝑆𝐴𝑀𝑈𝐼𝐺
𝑠,τ = ‖𝑢‖𝐿𝑝 + [∫ (

𝜔𝜏(𝑢, 𝑡)𝑝

𝑡2𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒 (
1
𝑡 , 𝑏ℬ, 𝛼ℬ, 𝛽ℬ, 𝑘ℬ)

)

𝑞

𝑑𝑡

𝑡
 

∞

0

]

1
𝑞

,                   (8) 



Proceedings of the 8th Faculty of Science International Conference (FOSIC 2025), Delta State 

University, Abraka, Nigeria. 12th – 14th November, 2025.    Pp. 34 - 49 

39 
 

        ‖𝑢‖ℱ𝑝,𝑞,𝑆𝐴𝑀𝑈𝐼𝐺
𝑠,τ = ‖‖(∑[2𝑗𝑠𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(2

𝑗 , 𝑏ℱ , 𝛼ℱ , 𝛽ℱ , 𝑘ℱ)|𝜓𝑗 ∗ 𝑢|]
𝑞

∞

𝑗=0

)

1
𝑞

‖‖

𝐿𝑝

.             (9) 

Completeness, embeddings, trace theorems 

and density properties are retained by these 

spaces.  

Fractional Petrov–Galerkin spectral element 

methods require basis functions that 

intrinsically reflect nonlocality, memory and 

scale coupling features. So we employ the 

Mamadu–Njoseh (2016) polynomials for 

degree 𝑛 and parameters (𝛼, 𝛽, 𝛾), blended 

with NNHG-weighted generating functions  

𝑀𝑁𝑛
(𝛼,𝛽,𝛾)(𝑥) = ∑(−𝑛)𝑘  

(𝛼 + 𝛽 + 𝑛 + 1)𝑘
𝑘! (𝛼 + 1)𝑘

(
𝑥 − 𝛾

2
)
𝑘

 

𝑛

𝑘=0

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)
(𝛼,𝛽) (𝑘 + 1)

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)
(𝛼,𝛽) (1)

.                    (10) 

The NNHG ratio introduces a nonlinear hierarchical weighting modulated by 𝛼, 𝛽 satisfying  

   〈𝑀𝑁𝑛
(𝛼,𝛽,𝛾)

,𝑀𝑁𝑚
(𝛼,𝛽,𝛾)〉𝑀𝑁 = ∫𝑀𝑁𝑛

(𝛼,𝛽,𝛾)(𝑥)

1

−1

𝑀𝑁𝑚
(𝛼,𝛽,𝛾)(𝑥) 𝜔(𝛼,𝛽)(𝑥) 𝑑𝑥 + ℎ𝑛

(𝛼,𝛽,𝛾)
𝛿𝑛𝑚,    (11) 

with ℎ𝑛
(𝛼,𝛽,𝛾)

 normalization constant. The three-term recurrence relation 𝑥 𝑀𝑁𝑛
(𝛼,𝛽,𝛾)(𝑥) becomes 

                                

{
 
 
 
 

 
 
 
 
𝒜𝑛 =

2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽 + 2)
 
𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)

(𝛼,𝛽) (𝑛 + 2)

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)
(𝛼,𝛽) (𝑛 + 1)

ℬ𝑛 =
2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽 + 2)
 
𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)

(𝛼,𝛽) (𝑛 + 1)

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)
(𝛼,𝛽) (𝑛 + 1)

𝒞𝑛 =
2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1)

(2𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽 + 2)
 
𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)

(𝛼,𝛽) (𝑛 − 1)

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒(2,1)
(𝛼,𝛽) (𝑛 + 1)

,             (12) 

ensuring stability even for large 𝑛, with 

NNHG-stabilized coefficients. 

To capture boundary layers and weak 

singularities, MN polynomials are coupled 

with poly-fratonomials (Zayernouri and 

Karniadakis, 2013). The hybrid spectral basis 

becomes 𝜔(𝛼,𝛽) 
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            𝛹𝑛,𝜇
(𝛼,𝛽,𝛾)(𝑥) = 𝑀𝑁𝑛

(𝛼,𝛽,𝛾)(𝑥) 𝒥𝜇
(𝛼,𝛽)(𝑥) 𝑒𝑥𝑝 [−

𝑁𝑁𝐻𝛤𝑠𝑡𝑎𝑏𝑙𝑒 (2,1)
(𝛼,𝛽) (2)(𝑥 − 𝛾)2

2
].               (13) 

By MN-polynomials trial functions and NN-weighted-fratonomials test functions, weak form is  

ℬ𝑆𝐴𝑀𝑈𝐼𝐺(𝑢, 𝑣) = ∫ 𝒟𝑆𝐴𝑀𝑈𝐼𝐺
𝑡
𝛼,𝛽
𝑢

𝛺

 𝑣 𝑤𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 +∑𝜎𝑒
𝑒∈ℰ

∫[𝑢][𝑣]𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒
𝑒

(ℎ𝑒
−1, 𝑏𝑗, 𝛼, 𝛽𝑗, 𝑘𝑗) 𝑑𝑠. (14) 

The domain decomposition, basis definitions, 

and semi-discrete system follow standard 

spectral element methodology but 

incorporate fractional nonlocality directly 

into the basis to give,          

[𝑴𝛼𝑡]𝑖𝑗 =∑ ∫ 𝛷𝑖
Ω𝑒

𝒟𝑆𝐴𝑀𝑈𝐼𝐺 𝛼𝑡,𝛽

𝑁𝑒

𝑒=1

𝛹𝑗  𝑑𝑥, [𝑲
𝛼𝑥]𝑖𝑗 =∑ ∫ 𝒟𝛼𝑥

Ω𝑒

𝛻𝑆𝐴𝑀𝑈𝐼𝐺 𝛼𝑥,𝛽𝛷𝑖

𝑁𝑒

𝑒=1

𝒟𝑆𝐴𝑀𝑈𝐼𝐺 𝛼𝑥,𝛽𝛹𝑗  𝑑𝑥. (15) 

Fully implicit stepping yields 

           𝑨𝑐𝑛 = 𝑴𝛼𝑡 [𝜔0
(𝛼𝑡)𝑐𝑛 −∑𝜔𝑘

(𝛼𝑡)

𝑛

𝑘=1

(𝑐𝑛−𝑘 − 𝑐𝑛−𝑘−1)] + 𝛥𝑡(𝑹𝑛 + 𝑺𝑛 + 𝑮𝑛).                  (16) 

A SAMUIG–AMG preconditioner accelerates GMRES using NNHG-weighted relaxation: 

                               𝑐𝑖
𝑘+1 = 𝑐𝑖

𝑘 +
𝜔𝑖
𝑁𝑁𝐻𝐺

𝑨𝑖𝑖
(𝑏𝑖 −∑𝑨𝑖𝑗𝑐𝑗

𝑘+1

𝑗=1

−∑𝑨𝑖𝑗𝑐𝑗
𝑘

𝑗=1

),                                  (17) 

while coarsening leverages NNHG-weighted strength-of-connection: 

   𝑆𝑖𝑗 =
|𝑨𝑖𝑗|

√|𝑨𝑖𝑖||𝑨𝑖𝑖|
𝑁𝑁𝐻Γ2,1

(𝛼𝑥,𝛽) (
|𝑥𝑖 − 𝑥𝑗|

ℎ
+ 1) > 𝜃𝑠𝑡𝑟𝑜𝑛𝑔,      𝜃𝑠𝑡𝑟𝑜𝑛𝑔threshold = 0.25.  (18) 

This strategy reduces AMG iterations from 

423 𝑡𝑜 89 for a one-million DOF system, 

lowers memory from 22.1 𝐺𝐵 to 14.7 𝐺𝐵, 

and achieves a residual norm of 7.6 × 10−7.  

Following Cushman and Ginn (2000), the 

anomalous gas-phase transport of species 𝑖 in 

atmospheric dispersion, the SAMUIG 

operator extends to  
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𝜕𝛼𝑡𝐶𝑖
𝜕𝑡𝛼𝑡

= 𝒟𝑆𝐴𝑀𝑈𝐼𝐺
𝛼𝑥 [∇2𝐶𝑖] + 𝑆𝑖 −∑𝑅𝑖𝑗(𝐶1, . . . , 𝐶𝑛, 𝑇, 𝑃) + 𝑣∇𝐶𝑖

𝑗

.                             (19) 

The fractional power-swing adsorption–

desorption dynamics for adsorption and 

desorption rates incorporate NNHG-

stabilized ratios (Sun et al., 2009):  

     𝑅𝑎𝑑𝑠(𝐶, 𝑞, 𝛼) = 𝐶
𝜈(𝛼)(𝑞𝑚𝑎𝑥 −𝑞)

𝜈(𝛼) ⋅
𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(𝐶, 𝑏𝑎𝑑𝑠, 𝜈(𝛼), 𝛽𝑎𝑑𝑠, 𝑘𝑎𝑑𝑠)

𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(𝐶𝑟𝑒𝑓, 𝑏𝑎𝑑𝑠, 𝜈(𝛼), 𝛽𝑎𝑑𝑠, 𝑘𝑎𝑑𝑠)
,           (20)  

                                      𝑅𝑑𝑒𝑠(𝑞, 𝛼) = 𝑞𝜇(𝛼) ⋅
𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(𝐶, 𝑏𝑑𝑒𝑠, 𝜇(𝛼), 𝛽𝑑𝑒𝑠, 𝑘𝑑𝑒𝑠)

𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒(𝐶𝑟𝑒𝑓 , 𝑏𝑑𝑒𝑠, 𝜇(𝛼), 𝛽𝑑𝑒𝑠, 𝑘𝑑𝑒𝑠)
.           (21)  

Coupling gas–solid exchange yields transport law (Metzler and Klafter, 2000)  

  
𝜕𝛼𝑡𝐶𝑖
𝜕𝑡𝛼𝑡

+ 𝛻 ⋅ (𝒗𝐶𝑖) = 𝐷𝑖
𝛼𝑥(𝛼𝑥)𝛻

𝛼𝑥𝐶𝑖 − 𝑆𝑖, 𝑆𝑖 = (1 − 𝜖)𝜌𝑠
𝜕𝑞𝑖
𝜕𝑡

⋅ 𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒 (
𝜖

1 − 𝜖
, 𝑏𝑠, 𝛼𝑠, 𝛽𝑠, 𝑘𝑠) , (22) 

with NNHG-weighted source linking gas-

phase depletion to solid-phase accrual. For 

Langmuir-type systems, breakthrough curves 

retain semi-analytical form with NNHG-

scaled widths, 

                             
𝐶(𝑡)

𝐶0
=
1

2
[1 + 𝑒𝑟𝑓  (

𝑡 − 𝑡𝑏

… ∙ 𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒 (
𝑡
𝑡𝑏
, 𝑏𝑏 , 𝛼𝑏 , 𝛽𝑏 , 𝑘𝑏)

)].                         (23) 

Following Westbrook and Dryer (1981), 

Meerschaert et al. (2006), and Turns (2011), 

reaction kinetics using the NNHG-modified 

Arrhenius formulation takes the form, 

    𝑅𝑖𝑗(𝐶, 𝑇) = −𝐴𝑖𝑗  𝑒𝑥𝑝 [−
𝐸𝑎,𝑖𝑗

𝑅𝑇
] ∙ 𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒 (

𝐸𝑎,𝑖𝑗

𝑅𝑇
, 𝑏𝑟𝑥𝑛, 𝛼𝑟𝑥𝑛, 𝛽𝑟𝑥𝑛, 𝑘𝑟𝑥𝑛)∏𝐶𝑘

𝑛𝑖𝑗𝑘

𝑘

,   (24) 

capturing distributed activation energies 

induced by temperature fluctuations.  

Finally, the plasma power-stabilization 

subsystem is captured by Westerlund and 

Ekstam (1994): 

                                              𝐿𝛼𝐿
𝑑𝛼𝐿

𝑑𝑡𝛼𝐿
𝐼 + 𝑅𝐼(𝑡) +

1

𝐶𝛼𝐶
 ∫ 𝐼(𝜏) 𝑑𝜏𝛼𝐶

𝑡

0

= 𝑉0 sin(2𝜋𝑓𝑑𝑟𝑖𝑣𝑒𝑡) ,          (25) 
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with 𝐿 = 0.085 𝐻 𝑅 = 45 𝛺 𝐶 = 220 𝜇𝐹 

𝛼𝐿 = 0.9 𝛼𝐶 = 0.85 voltage amplitude 𝑉0 =

12 𝑘𝑉 and 𝑓𝑑𝑟𝑖𝑣𝑒 = 150 𝐻𝑧. Assuming  

𝐼(𝑡) = 𝐼0𝑒
𝑖𝜔𝑡 gives fractional impedance 

𝑍(𝜔) and resonance 𝐿𝛼𝐿𝜔𝛼𝐶  𝑠𝑖𝑛 (
𝛼𝐿𝜋

2
). 

Solving gives 𝑓𝑟𝑒𝑠 = 147 𝐻𝑧 ≫ 36.7 𝐻𝑧, the 

classical prediction. Setting 𝛼𝐿 = 𝛼𝐶 = 1 

gives the standard RLC model, confirming 

the necessity of fractional elements. 

Artificial-intelligence acceleration is 

introduced through a neural surrogate for the 

logarithmic NNHG kernel, approximating 

(Eq. 3), to maintain conditioning throughout 

the SAMUIG operator. Following the 

universal approximation results of Hornik et 

al. (1989),  a five-layer ELU network (128 −

256 − 256 − 128 𝑛𝑒𝑢𝑟𝑜𝑛𝑠) maps 

(𝑥, 𝑙𝑜𝑔𝑏, 𝛼, 𝛽, 𝑘) ↦ 𝑙𝑜𝑔𝑁𝑁𝐻𝐺𝑠𝑡𝑎𝑏𝑙𝑒, and 

was trained in log-space using an MSE loss 

with 𝐿2-regularization and Adam-W 

optimization (Kingma and Ba, 2014). 

Training employs 4.5 × 108 Latin-

hypercube samples generated via arbitrary-

precision Lanczos 𝑙𝑜𝑔𝛤. After 50 epochs 

with cosine-annealed learning rate, validation 

on 5 × 107 independent samples yield a 

mean relative error of 0.12 %, a 99𝑡ℎ-

percentile error below 0.8 %, and a 

maximum of 2.47% in the stiff regime 𝑥 <

0.2,  𝛼 > 1.8. Inference latency decreases 

from 118.6 𝑛𝑠 to 0.78 𝑛𝑠 (152 ×

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝), reducing a full SAMUIG 

fractional simulation from 31 ℎ to 12 𝑚𝑖𝑛. 

To solve the governing fractional PDEs, a 

physics-informed neural network (PINN) 

minimizes (Raissi et al., 2019; Karniadakis et 

al., 2021),

 

             𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑑𝑎𝑡𝑎𝐿𝑑𝑎𝑡𝑎 + 𝜆𝑃𝐷𝐸𝐿𝑃𝐷𝐸 + 𝜆𝐵𝐶𝐿𝐵𝐶 + 𝜆𝐼𝐶𝐿𝐼𝐶 ,                                                       (26) 

with fractional residuals via the Grünwald–

Letnikov approximation. Bayesian 

optimization selects 

(𝜆𝑑𝑎𝑡𝑎, 𝜆𝑃𝐷𝐸 , 𝜆𝐵𝐶 , 𝜆𝐼𝐶) = (1.0,0.5,2.0,1.5) 
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reflecting the global influence of boundary 

accuracy in atmospheric transport. The 

architecture uses a shared encoder with 

hidden layers [256 → 512 → 512 → 256] 

and tanh activation, chosen for its non-

vanishing gradients relative to the sigmoid. 

The encoder maps 𝐸:ℝ8 → ℝ256, producing 

a latent state ℎ = 𝐸(𝑋). Ten pollutant-

specific decoders 𝒟𝑗: ℝ
256 → ℝ,  with 

[128→64→1] layers generate concentrations 

for 𝐶𝑗. Training uses 107 samples from 1,000 

SAMUIG simulations on a 2,800-core MPI 

cluster. Once trained, the PINN produces full 

3-D, 1-h concentration fields (26.2 × 106 

outputs) in 0.183 𝑠 versus 5.4 ℎ for the 

numerical solver, a 1.06 × 105 speedup 

enabling real-time optimization. The input 

vector is 𝑿 = (𝑥, 𝑦, 𝑧, 𝑡, 𝑇, 𝑃, 𝑢𝑤𝑖𝑛𝑑, 𝐶𝑖𝑛), 

with (𝑥, 𝑦, 𝑧, ) ∈ [0,100] × [0,100] ×

[0,50]  𝑚3, 𝑡 ∈ [0,3600] 𝑠 and operating 

parameters 𝑇 ∈ [280,380] 𝐾, 𝑃 ∈

[0.95,1.05] 𝑏𝑎𝑟, 𝑢𝑤𝑖𝑛𝑑 ∈
[0.5,12]𝑚

𝑠
, 𝐶𝑖𝑛 ∈

[1000,15000] 𝑝𝑝𝑚. Control optimization 

uses a dueling Deep Q-Network, where 

separating value and advantage terms 

preserves optimal policy 

[𝑎𝑟𝑔 max𝑎𝑄(𝑠, 𝑎) = 𝑎𝑟𝑔 max𝑎𝐴(𝑠, 𝑎)] 

(Wang et al., 2016). Under the optimal policy 

𝜋\∗,  

                       𝑄\∗(𝑠, 𝑎) = 𝔼 [∑𝛾𝑡𝑟𝑡+1  | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋\∗
∞

𝑡=0

] ,       𝛾 = 0.98.                            (27) 

The state vector comprises 18 process and environmental variables, 

𝑠 = (𝐶𝐶𝐻4 , 𝐶𝐶𝑂2 , 𝐶𝐶𝑂, 𝑇1, 𝑇2,
𝑞1
𝑞𝑚𝑎𝑥

,
𝑞2
𝑞𝑚𝑎𝑥

, 𝑃𝑠𝑦𝑠, 𝑢𝑤𝑖𝑛𝑑 , 𝜃𝑤𝑖𝑛𝑑 , 𝑇𝑎𝑚𝑏, 𝑅𝐻, 𝐶𝑖𝑛, 𝑡𝑐𝑦𝑐 , 𝑏𝑎𝑐𝑡, 𝐼𝑝𝑙𝑎𝑠, 𝑉𝑝𝑙𝑎𝑠, ℎ𝑠𝑐𝑜𝑟𝑒). 

 

A multi-task vision system using eight RGB 

and four IR cameras employs a ResNet-50 

backbone (He et al., 2016) to generate 512-D 

embeddings for efficiency regression 

𝑀𝐴𝐸 = 1.9% and 𝑅2 = 0.91, smoke-

density estimation via U-Net and Beer–
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Lambert inversion, and 8-class anomaly 

detection (89.2% 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). Thermal 

anomalies are detected by a convolutional 

autoencoder, achieving 94.8% detection 

with 7.9% false positives. 

Results 

The logarithmic NNHG formulation (Eq. 3) 

substantially improves numerical robustness 

across fractional orders 𝛼 ∈ [0.5,2.0] and 

spectral bases 𝑁 ∈ [32,256]. By performing 

all operations in log-space, the method avoids 

overflow inherent in classical gamma-based 

formulations (e.g., 𝛤(150)0.8 ≈ 3.16 ×

10208, close to the IEEE-754 double-

precision limit 1.798 × 10308). For a 

representative operator 𝛼 = 1.5 with 

Chebyshev basis on [0,10] of size 𝑁 = 128, 

the classical stiffness matrix yielded 

𝜅𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 4.72 × 10
15 > 𝜀𝑚𝑎𝑐ℎ𝑖𝑛𝑒

−1 , 

causing loss of precision. The NNHG-based 

operator (parameters 𝑏 = 2.1, 𝛼 = 0.8, 𝛽 =

−1.2, 𝑘 = 1.5) produced 𝜎max = 2.41 ×

106 and 𝜎min = 2.30 × 10
−2, giving 

𝜅𝑁𝑁𝐻𝐺 = 1.05 × 10
8 and 𝑅𝜅 ≈ 4.5 × 10

4, 

conditioning improvement, with residuals 

3.2 × 10−11 versus non-convergence in the 

classical case. The log-space evaluations also 

allow previously impossible computations. 

Table 1. Comparison of Classical Gamma Function and NNHG Function Performance 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 2. Atmospheric Dispersion Prediction Accuracy for Classical vs. SAMUIG Models  

Metric Classical 

Γ(x) 

NNHG 

Function 

Improvement 

Factor 

Matrix condition 

number 
8.7 × 1014 1.9 × 1013 45 × 

Computation time 

per evaluation (ns) 
120 0.8 150 × 

Total simulation 

time (hours) 
30.9 0.12 147 × 

Numerical overflow 

occurrences 
847 0 Complete 

elimination 

Distance 

Downwind (m) 

Experimental 

C (ppm) 

Classical 

Model 

(ppm) 

SAMUIG 

Model (ppm) 
Classical 

Error (%) 

SAMUIG 

Error (%) 
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 Table 3: Complete System Integration Performance Comparison,  

 

A neural NNHG surrogate reduces inference 

latency to 0.78 𝑛𝑠/𝑠𝑎𝑚𝑝𝑙𝑒 on an NVIDIA 

V100 (batch 10,000), achieving a 152 × 

speedup over exact C++/GMP evaluation. 

For 2.31 × 1010 evaluations, runtime drops 

from 45.7 𝑚𝑖𝑛 to 18 𝑠, with mean relative 

error 1.18 × 10−3; rare high-error cases 

(0.14%) are corrected via residual triggers at 

negligible cost.  

The PINN surrogate predicts full 3-D, 1-h 

concentration fields (26.2 ×

106 𝑜𝑢𝑡𝑝𝑢𝑡𝑠) in 0.183 𝑠 versus 5.4 ℎ𝑟𝑠 for 

the SAMUIG solver, yielding a 1.06 × 105 

speedup and enabling real-time optimization. 

Across 500 scenarios, average MAPE is 

4.77%  𝐶𝐻4 = 3.82%, 𝐶𝑂2 = 4.21%, 𝐶𝑂 =

6.84%,𝑁𝑂𝑥 = 8.12% 𝑎𝑛𝑑 𝐴𝑣𝑔 = 4.77%, 

with modest boundary (7.3%) and temporal 

error growth (
𝜕𝑀𝐴𝑃𝐸

𝜕𝑡
 ≈  0.0015%/𝑠).  

10 4,850 5,420 4,920 11.8 1.4 

25 2,340 2,890 2,410 23.5 3.0 

50 1,120 1,580 1,090 41.1 2.7 

75 730 1,020 748 39.7 2.5 

100 478 720 461 50.7 3.7 

150 260 395 268 51.9 3.0 

200 140 225 136 60.7 2.9 

Mean absolute 

percentage 

error 

− − − 39.9 2.7 

Metric Classical 

Methods 

SAMUIG 

Only 

SAMUIG 

+ AI 

AI Benefit vs 

SAMUIG 

Computation time (hours) 39.7 5.4 0.73 7.4 × faster 

Real-time prediction 𝑁/𝐸 𝑁/𝐸 0.18 Enables control 

Capture efficiency (%) 72.0 80.1 87.4 +9.1% absolute 

Breakthrough prediction error (%) 21.2 6.7 2.9 2.3 × better 

Annual profit per facility ($k) 220 1,188 2.156 +81%  

Lives saved per year 48 66 75 +14%  

Operator training time (weeks) 6 6 1.5 −75%  

Unplanned shutdowns per year 12 8 0.4 −95%  
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The reinforcement-learning controller 

outperforms MPC and heuristic strategies 

over 1,000 episodes, achieving methane 

capture of 87.14% ± 2.18% and delivering a 

net economic gain of $266,400/𝑦𝑒𝑎𝑟 

relative to MPC. 

Discussion 

SAMUIG-AI framework provides a coherent 

and effective fusion of stable fractional 

calculus, NNHG-based numerical 

conditioning, and modern AI. The reduction 

in conditioning from 𝜅𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 4.72 ×

1015  →  𝜅𝑁𝑁𝐻𝐺 = 1.05 × 10
8 constitutes a 

qualitative mathematical breakthrough, 

resolving the long-standing instability of 

gamma-based fractional operators (Diethelm, 

2010). The log-space definition (Eq. 3) 

ensures all intermediate operations remain 

within floating-point range, unlike the direct 

form (Eq. 2) which forms enormous 

intermediate values before cancellation. This 

transformation plays a role analogous to 

historical logarithmic computation: not 

merely increasing convenience but 

preserving numerical representability. 

Crucially, this stability is not isolated; it 

enables the entire SAMUIG-AI pipeline. 

Stable fractional operators provide physically 

faithful memory kernels, which improve the 

training of PINN surrogates; fast surrogates 

enable large-scale RL optimization; and 

optimized policies feed back into improved 

physical operation. The architecture thus 

forms a closed innovation loop linking 

mathematics, modeling, and AI. 

Conclusion 

The SAMUIG-AI framework unifies the 

stable NNHG formulation (Eq. 3) with 

fractional calculus, Petrov–Galerkin spectral 

element methods, Njoseh–Mamadu 

polynomials with Jacobi-poly-fratonomials, 

PINNs, and reinforcement learning to deliver 

a robust, high-performance modelling and 

control architecture. Applied to gas-flare 

control, the system achieved 87.4% capture 

efficiency, generating $2.156𝑀 annual profit 
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per facility and preventing ~75 pollution-

related deaths per year, with a 3.67-year 

payback period.  Future work should extend 

the framework to carbon capture, water 

treatment, and pharmaceutical manufacturing 

while exploring adaptive fractional orders, 

uncertainty quantification, and transfer-

learning-enabled deployment across 

facilities. 
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