

AI-Augmented Synthetic Adaptive Multi-Scale Unified Integrated Generalized Petrov–Galerkin Fractional Spectral Element Frameworks for Emission Control and Resource Recovery

***Emmanuel Chukwudumebi Nwani-Nkeadi, Friday Zinzendorf Okwonu, Ignatius Nkeonyeasua Njoseh and Joshua Sarduana Apanapudor**

Department of Mathematics, Delta State university, Abraka, Nigeria.

*Corresponding author's email: neet4all@yahoo.com

Abstract

We present an AI-augmented, multi-scale framework integrating fractional calculus, Petrov–Galerkin spectral element modeling (PG-SEM), and machine learning to transform conventional emission control into a resource-recovery and circular-utilization platform. The system is governed by distributed-order fractional variable-order stochastic space-time PDEs, capturing memory, heterogeneity, and nonlocal behavior often missed by traditional models. Fractional formulations improve predictive accuracy by 30 – 50%, while PG-SEM delivers spectral precision with up to two-order-of-magnitude computational speedups. Coupled with Fractional Swing Adsorption (FSA), sorbent utilization increases by 25 – 45%, and AI-driven surrogate control reduces energy demand by 15 – 30%. Experimental validation shows 85 – 98% CO_2 and hydrocarbon capture, 70 – 90% waste-to-fuel conversion, and methane purity above 85%, enabling payback periods of 2 – 7 years. Integration of advanced mathematics with AI transforms gas flare capture efficiency from 72% to 87.4%, generating \$2.2M annual profit per facility while preventing 75 deaths yearly. Scalable from 10 kg/h prototypes to $> 100,000 Nm^3/h$ industrial systems, the framework could mitigate 400 – 600 Mt CO_2 -equivalent annually, representing a \$50 – 100 billion global opportunities.

Keywords: *Fractional calculus, NNHG functions, SAMUIG operator, Power swing adsorption Artificial intelligence.*

Introduction

Fractional calculus extends classical concepts of differentiation and integration to non-integer orders, offering a powerful and flexible mathematical framework for modeling complex physical phenomena. Its ability to capture hereditary responses, long-range memory, anomalous diffusion, and nonlocal interactions makes it indispensable for modeling systems in which classical integer-order models systematically fail, particularly atmospheric pollutant dispersion,

heterogeneous reaction-diffusion processes, and electromagnetic wave propagation in irregular media (Podlubny, 1999; Kilbas et al., 2006; Baleanu et al., 2012). At the core of fractional calculus lies the gamma function, whose analytical properties determine the scaling and behavior of most fractional operators. Through Stirling-type asymptotic expansions formalized by Euler (1740) and extensively analyzed in modern fractional frameworks (Diethelm, 2010),

$$\Gamma(x) = \int_0^{\infty} t^{1-x} e^{-t} dt, \quad \Gamma(x) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x, \quad (1)$$

the magnitude of $\Gamma(x)$ increases so rapidly that values such as $\Gamma(150) \approx 9.43 \times 10^{260}$ surpass representational limits of standard double-precision arithmetic (1.798×10^{308}). As shown by Diethelm (2010), Li & Zeng (2015), and Garrappa (2011), this explosive growth produces conditioning numbers exceeding 10^{15} , which makes high order spectral formulations that are otherwise preferred for accurate multiscale simulations

numerically unstable and in many cases unusable in practice. This computational bottleneck has long hindered the deployment of fractional operators in large-scale multi-physics simulations involving gas transport, multicomponent chemical reactions, and adsorption-desorption dynamics in porous media. This limitation is particularly consequential for environmental and energy systems. Elvidge et al. (2016) reported that

industrial gas flaring releases more than 140 billion cubic meters of gas annually, exacerbating greenhouse emissions and economic losses. Traditional capture and conversion systems described using integer-order differential equations, such as those analyzed by Rahimpour and Jokar (2012), struggle to represent the coupled physics of turbulent atmospheric dispersion, non-Fickian transport through microporous adsorbents, and electromagnetic stabilization in plasma-assisted conversion units. As shown by Grande and Rodrigues (2005) and supported by more recent atmospheric chemistry assessments (Edwards et al., 2023), these classical formulations typically achieve only about 72% capture efficiency, with breakthrough prediction errors exceeding 21%, resulting in substantial methane slip, reduced process reliability, and missed opportunities for resource recovery. Recent advances in fractional operator design and extended calculus formulations provide a

foundation for addressing these limitations. The introduction of generalized operator families and non-singular kernels (Atangana and Koca, 2016; Odibat and Shawagfeh, 2007) has stimulated new research pathways for constructing more stable and physically consistent differential operators. In parallel, modern applications of fractional calculus in complex multi-physics environments; spanning biological tissues (Magin, 2012) to nonlinear control systems and real-world engineering processes (Sun et al., 2018), demonstrate its versatility and the urgent need for numerically stable formulations. The present work responds to these long-standing challenges by introducing three primary contributions. First, inspired by contemporary numerical-stability strategies (Garrappa, 2011; Atangana and Koca, 2016), we develop the Nwani–Njoseh Hybrid Gamma (NNHG) function family to regularize fractional operators and eliminate the catastrophic growth associated with

classical gamma-based kernels. Second, extending unified-operator approaches such as those in Sun et al. (2018), we construct the SAMUIG unified fractional operator, which synthesizes multiple competing definitions of fractional differentiation through adaptive, data-driven weighting designed for multi-physics environments. Third, building on pioneering artificial-intelligence-assisted differential-equation solvers (Raissi, Perdikaris and Karniadakis, 2019), we embed a five-layer AI architecture that accelerates fractional computations, improves operator learning, and enables real-time optimization of gas-capture and emission-conversion systems.

Together, these innovations form a mathematically rigorous and computationally efficient foundation for next-generation resource-recovery technologies targeting industrial flaring, atmospheric emissions, and advanced adsorption–conversion platforms.

Materials and Methods

Following the numerical stability framework of Garrappa (2015), we introduce the Nwani–Njoseh Hybrid Gamma (NNHG) function as a stable alternative to the classical gamma-based kernels used in fractional operators. Its direct form,

$$NNHG_{direct}(x, b, \alpha, \beta, k) = \frac{[\Gamma(x)]^\alpha}{b^x(1+b^{-kx})^\beta}, \quad (2)$$

and the log-stable form,

$$NNHG_{stable}(x, b, \alpha, \beta, k) = \exp\{\alpha \log \Gamma(x) - x \log b - \beta \log[1 + \exp(-kx \log b)]\}, \quad (3)$$

replaces the Stirling-type asymptotics of $\Gamma(x)$, suppressing uncontrolled factorial growth while retaining essential scaling.

Building on this stable foundation, we define the Synthetic Adaptive Multi-Scale Unified Integrated Generalized (SAMUIG) fractional operator as a convex combination of

established Riemann–Liouville, Caputo, and

Atangana–Baleanu derivatives:

$${}_{a\text{SAMUIG}}^{\text{SAMUIG}}\mathcal{D}_{t,\gamma}^{\alpha}[u](t) = \omega_1(\alpha, \beta_w)^{RL}_a\mathcal{D}_t^{\alpha}u + \omega_2(\alpha, \beta_w)^C_a\mathcal{D}_t^{\alpha}u + \omega_3(\alpha, \beta_w)^{AB}_a\mathcal{D}_t^{\alpha}u + K_{\gamma}u, \quad (4)$$

with weights $\omega_i(\alpha, \beta_w)$ defined through a log-sum-exp normalization, ensuring smoothness, positivity and unity

$$K_{\gamma}u(x, y, t) = \text{NNHG}_{\text{stable}}(|x - y|, \gamma_s, \alpha_s, \beta_s, k_s)\text{NNHG}_{\text{stable}}(t, \gamma_t, \alpha_t, \beta_t, k_t)e^{\left[-\frac{|x-y|^2}{L_s^2} + \frac{t^2}{T_c^2}\right]}, \quad (5)$$

evaluated completely in log-space to preserve stability. Spatial and temporal correlation scales $L_s = 2.3 \text{ mm}$ and $T_c = 18.5 \text{ s}$ are

$$D_{\text{SAMUIG}}^{\alpha}[u(x, t)] = \int \int K_{\gamma}u(x, y, t - \tau) [\omega_1(\mathcal{D}_1) + \omega_2(\mathcal{D}_2) + \omega_3(\mathcal{D}_3)]u(y, \tau) dy d\tau, \quad (6)$$

providing a tunable, self-regularizing nonlocal formulation via NNHG-weighted kernels.

We define SAMUIG fractional spaces as NNHG-enhanced analogues of Sobolev,

$$\|u\|_{\mathcal{W}_{\text{SAMUIG}}^{s,p}} = \left(\int_{\Omega} |u|^p dx + \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{\text{NNHG}_{\text{stable}}(|x - y|, b_s, s, \beta_s, k_s)} dx dy \right)^{\frac{1}{p}}, \quad (7)$$

while the Besov and Triebel–Lizorkin norms incorporate NNHG-weighted smoothness terms:

$$\|u\|_{\mathcal{B}_{p,q,\text{SAMUIG}}^{s,\tau}} = \|u\|_{L^p} + \left[\int_0^{\infty} \left(\frac{\omega_{\tau}(u, t)_p}{t^2 \text{NNHG}_{\text{stable}}\left(\frac{1}{t}, b_{\mathcal{B}}, \alpha_{\mathcal{B}}, \beta_{\mathcal{B}}, k_{\mathcal{B}}\right)} \right)^q \frac{dt}{t} \right]^{\frac{1}{q}}, \quad (8)$$

$$\|u\|_{\mathcal{F}_{p,q,SAMUIG}^{s,\tau}} = \left\| \left(\sum_{j=0}^{\infty} [2^{js} NNHG_{stable}(2^j, b_{\mathcal{F}}, \alpha_{\mathcal{F}}, \beta_{\mathcal{F}}, k_{\mathcal{F}}) |\psi_j * u|]^q \right)^{\frac{1}{q}} \right\|_{L^p}. \quad (9)$$

Completeness, embeddings, trace theorems and density properties are retained by these spaces.

Fractional Petrov–Galerkin spectral element methods require basis functions that

intrinsically reflect nonlocality, memory and scale coupling features. So we employ the Mamadu–Njoseh (2016) polynomials for degree n and parameters (α, β, γ) , blended with NNHG-weighted generating functions

$$MN_n^{(\alpha, \beta, \gamma)}(x) = \sum_{k=0}^n (-n)_k \frac{(\alpha + \beta + n + 1)_k}{k! (\alpha + 1)_k} \left(\frac{x - \gamma}{2}\right)^k \frac{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(k + 1)}{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(1)}. \quad (10)$$

The NNHG ratio introduces a nonlinear hierarchical weighting modulated by α, β satisfying

$$\langle MN_n^{(\alpha, \beta, \gamma)}, MN_m^{(\alpha, \beta, \gamma)} \rangle_{MN} = \int_{-1}^1 MN_n^{(\alpha, \beta, \gamma)}(x) MN_m^{(\alpha, \beta, \gamma)}(x) \omega^{(\alpha, \beta)}(x) dx + h_n^{(\alpha, \beta, \gamma)} \delta_{nm}, \quad (11)$$

with $h_n^{(\alpha, \beta, \gamma)}$ normalization constant. The three-term recurrence relation $x MN_n^{(\alpha, \beta, \gamma)}(x)$ becomes

$$\begin{cases} \mathcal{A}_n = \frac{2(n+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} \frac{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n+2)}{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n+1)} \\ \mathcal{B}_n = \frac{2(n+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} \frac{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n+1)}{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n+1)}, \\ \mathcal{C}_n = \frac{2(n+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} \frac{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n-1)}{NNH\Gamma_{stable(2,1)}^{(\alpha, \beta)}(n+1)} \end{cases} \quad (12)$$

ensuring stability even for large n , with NNHG-stabilized coefficients.

To capture boundary layers and weak singularities, MN polynomials are coupled

with poly-fratonomials (Zayernouri and Karniadakis, 2013). The hybrid spectral basis

becomes $\omega^{(\alpha, \beta)}$

$$\Psi_{n,\mu}^{(\alpha,\beta,\gamma)}(x) = MN_n^{(\alpha,\beta,\gamma)}(x) \mathcal{J}_{\mu}^{(\alpha,\beta)}(x) \exp \left[-\frac{NNH\Gamma_{stable}^{(\alpha,\beta)}(2)(x-\gamma)^2}{2} \right]. \quad (13)$$

By MN-polynomials trial functions and NN-weighted-fratonomials test functions, weak form is

$$\mathcal{B}_{SAMUIG}(u, v) = \int_{\Omega} {}^{SAMUIG} \mathcal{D}_t^{\alpha,\beta} u v w_{test}(x) dx + \sum_{e \in \mathcal{E}} \sigma_e \int_e [u][v] NNH\Gamma_{stable} \left(h_e^{-1}, b_j, \alpha, \beta_j, k_j \right) ds. \quad (14)$$

The domain decomposition, basis definitions, incorporate fractional nonlocality directly and semi-discrete system follow standard into the basis to give, spectral element methodology but

$$[\mathbf{M}^{\alpha_t}]_{ij} = \sum_{e=1}^{N_e} \int_{\Omega_e} \Phi_i {}^{SAMUIG} \mathcal{D}^{\alpha_t, \beta} \Psi_j dx, [\mathbf{K}^{\alpha_x}]_{ij} = \sum_{e=1}^{N_e} \int_{\Omega_e} \mathcal{D}^{\alpha_x} {}^{SAMUIG} \nabla^{\alpha_x, \beta} \Phi_i {}^{SAMUIG} \mathcal{D}^{\alpha_x, \beta} \Psi_j dx. \quad (15)$$

Fully implicit stepping yields

$$\mathbf{A}c^n = \mathbf{M}^{\alpha_t} \left[\omega_0^{(\alpha_t)} c^n - \sum_{k=1}^n \omega_k^{(\alpha_t)} (c^{n-k} - c^{n-k-1}) \right] + \Delta t (\mathbf{R}^n + \mathbf{S}^n + \mathbf{G}^n). \quad (16)$$

A SAMUIG-AMG preconditioner accelerates GMRES using NNHG-weighted relaxation:

$$c_i^{k+1} = c_i^k + \frac{\omega_i^{NNHG}}{\mathbf{A}_{ii}} \left(b_i - \sum_{j=1} \mathbf{A}_{ij} c_j^{k+1} - \sum_{j=1} \mathbf{A}_{ij} c_j^k \right), \quad (17)$$

while coarsening leverages NNHG-weighted strength-of-connection:

$$S_{ij} = \frac{|\mathbf{A}_{ij}|}{\sqrt{|\mathbf{A}_{ii}| |\mathbf{A}_{ii}|}} NNH\Gamma_{2,1}^{(\alpha_x, \beta)} \left(\frac{|x_i - x_j|}{h} + 1 \right) > \theta_{strong}, \quad \theta_{strong} \text{ threshold} = 0.25. \quad (18)$$

This strategy reduces AMG iterations from 423 to 89 for a one-million DOF system, lowers memory from 22.1 GB to 14.7 GB, and achieves a residual norm of 7.6×10^{-7} .

Following Cushman and Ginn (2000), the anomalous gas-phase transport of species i in atmospheric dispersion, the SAMUIG operator extends to

$$\frac{\partial^{\alpha_t} C_i}{\partial t^{\alpha_t}} = \mathcal{D}_{SAMUIG}^{\alpha_x} [\nabla^2 C_i] + S_i - \sum_j R_{ij}(C_1, \dots, C_n, T, P) + v \nabla C_i. \quad (19)$$

The fractional power-swing adsorption–desorption rates incorporate NNHG-desorption dynamics for adsorption and stabilized ratios (Sun et al., 2009):

$$R_{ads}(C, q, \alpha) = C^{\nu(\alpha)} (q_{max} - q)^{\nu(\alpha)} \cdot \frac{NNHG_{stable}(C, b_{ads}, \nu(\alpha), \beta_{ads}, k_{ads})}{NNHG_{stable}(C_{ref}, b_{ads}, \nu(\alpha), \beta_{ads}, k_{ads})}, \quad (20)$$

$$R_{des}(q, \alpha) = q^{\mu(\alpha)} \cdot \frac{NNHG_{stable}(C, b_{des}, \mu(\alpha), \beta_{des}, k_{des})}{NNHG_{stable}(C_{ref}, b_{des}, \mu(\alpha), \beta_{des}, k_{des})}. \quad (21)$$

Coupling gas–solid exchange yields transport law (Metzler and Klafter, 2000)

$$\frac{\partial^{\alpha_t} C_i}{\partial t^{\alpha_t}} + \nabla \cdot (\nu C_i) = D_i^{\alpha_x} (\alpha_x) \nabla^{\alpha_x} C_i - S_i, S_i = (1 - \epsilon) \rho_s \frac{\partial q_i}{\partial t} \cdot NNHG_{stable} \left(\frac{\epsilon}{1 - \epsilon}, b_s, \alpha_s, \beta_s, k_s \right), \quad (22)$$

with NNHG-weighted source linking gas-phase depletion to solid-phase accrual. For Langmuir-type systems, breakthrough curves

$$\frac{C(t)}{C_0} = \frac{1}{2} \left[1 + erf \left(\frac{t - t_b}{\dots \cdot NNHG_{stable} \left(\frac{t}{t_b}, b_b, \alpha_b, \beta_b, k_b \right)} \right) \right]. \quad (23)$$

Following Westbrook and Dryer (1981), Meerschaert et al. (2006), and Turns (2011), reaction kinetics using the NNHG-modified Arrhenius formulation takes the form,

$$R_{ij}(C, T) = -A_{ij} \exp \left[-\frac{E_{a,ij}}{RT} \right] \cdot NNHG_{stable} \left(\frac{E_{a,ij}}{RT}, b_{rxn}, \alpha_{rxn}, \beta_{rxn}, k_{rxn} \right) \prod_k C_k^{n_{ijk}}, \quad (24)$$

capturing distributed activation energies induced by temperature fluctuations.

Finally, the plasma power-stabilization subsystem is captured by Westerlund and Ekstam (1994):

$$L^{\alpha_L} \frac{d^{\alpha_L}}{dt^{\alpha_L}} I + RI(t) + \frac{1}{C^{\alpha_C}} \int_0^t I(\tau) d\tau^{\alpha_C} = V_0 \sin(2\pi f_{drive} t), \quad (25)$$

with $L = 0.085 \text{ H}$ $R = 45 \Omega$ $C = 220 \mu\text{F}$ $\alpha_L = 0.9$ $\alpha_C = 0.85$ voltage amplitude $V_0 = 12 \text{ kV}$ and $f_{drive} = 150 \text{ Hz}$. Assuming $I(t) = I_0 e^{i\omega t}$ gives fractional impedance $Z(\omega)$ and resonance $L^{\alpha_L} \omega^{\alpha_C} \sin\left(\frac{\alpha_L \pi}{2}\right)$.

Solving gives $f_{res} = 147 \text{ Hz} \gg 36.7 \text{ Hz}$, the classical prediction. Setting $\alpha_L = \alpha_C = 1$ gives the standard RLC model, confirming the necessity of fractional elements.

Artificial-intelligence acceleration is introduced through a neural surrogate for the logarithmic NNHG kernel, approximating (Eq. 3), to maintain conditioning throughout the SAMUIG operator. Following the universal approximation results of Hornik et al. (1989), a five-layer ELU network (128 – 256 – 256 – 128 neurons) maps $(x, \log b, \alpha, \beta, k) \mapsto \log \text{NNHG}_{stable}$, and

was trained in log-space using an MSE loss with L_2 -regularization and Adam-W optimization (Kingma and Ba, 2014). Training employs 4.5×10^8 Latin-hypercube samples generated via arbitrary-precision Lanczos $\log \Gamma$. After 50 epochs with cosine-annealed learning rate, validation on 5×10^7 independent samples yield a mean relative error of 0.12 %, a 99th-percentile error below 0.8 %, and a maximum of 2.47% in the stiff regime $x < 0.2$, $\alpha > 1.8$. Inference latency decreases from 118.6 ns to 0.78 ns (152 \times speedup), reducing a full SAMUIG fractional simulation from 31 h to 12 min. To solve the governing fractional PDEs, a physics-informed neural network (PINN) minimizes (Raissi et al., 2019; Karniadakis et al., 2021),

$$L_{total} = \lambda_{data} L_{data} + \lambda_{PDE} L_{PDE} + \lambda_{BC} L_{BC} + \lambda_{IC} L_{IC}, \quad (26)$$

with fractional residuals via the Grünwald–Letnikov approximation. Bayesian

optimization selects $(\lambda_{data}, \lambda_{PDE}, \lambda_{BC}, \lambda_{IC}) = (1.0, 0.5, 2.0, 1.5)$

reflecting the global influence of boundary accuracy in atmospheric transport. The architecture uses a shared encoder with hidden layers $[256 \rightarrow 512 \rightarrow 512 \rightarrow 256]$ and tanh activation, chosen for its non-vanishing gradients relative to the sigmoid. The encoder maps $E: \mathbb{R}^8 \rightarrow \mathbb{R}^{256}$, producing a latent state $h = E(X)$. Ten pollutant-specific decoders $\mathcal{D}_j: \mathbb{R}^{256} \rightarrow \mathbb{R}$, with $[128 \rightarrow 64 \rightarrow 1]$ layers generate concentrations for C_j . Training uses 10^7 samples from 1,000 SAMUIG simulations on a 2,800-core MPI cluster. Once trained, the PINN produces full 3-D, 1-h concentration fields (26.2×10^6 outputs) in 0.183 s versus 5.4 h for the

$$Q^*(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \mid s_0 = s, a_0 = a, \pi^* \right], \quad \gamma = 0.98. \quad (27)$$

The state vector comprises 18 process and environmental variables,

$$s = \left(C_{CH_4}, C_{CO_2}, C_{CO}, T_1, T_2, \frac{q_1}{q_{max}}, \frac{q_2}{q_{max}}, P_{sys}, u_{wind}, \theta_{wind}, T_{amb}, RH, C_{in}, t_{cyc}, b_{act}, I_{plas}, V_{plas}, h_{score} \right).$$

A multi-task vision system using eight RGB and four IR cameras employs a ResNet-50 backbone (He et al., 2016) to generate 512-D

numerical solver, a 1.06×10^5 speedup enabling real-time optimization. The input vector is $\mathbf{X} = (x, y, z, t, T, P, u_{wind}, C_{in})$, with $(x, y, z, t) \in [0, 100] \times [0, 100] \times [0, 50] \text{ m}^3, t \in [0, 3600] \text{ s}$ and operating parameters $T \in [280, 380] \text{ K}, P \in [0.95, 1.05] \text{ bar}, u_{wind} \in \frac{[0.5, 12] \text{ m}}{\text{s}}, C_{in} \in [1000, 15000] \text{ ppm}$. Control optimization uses a dueling Deep Q-Network, where separating value and advantage terms preserves optimal policy $[\arg \max_a Q(s, a) = \arg \max_a A(s, a)]$ (Wang et al., 2016). Under the optimal policy π^* ,

embeddings for efficiency regression $MAE = 1.9\%$ and $R^2 = 0.91$, smoke-density estimation via U-Net and Beer-

Lambert inversion, and 8-class anomaly detection (89.2% *accuracy*). Thermal anomalies are detected by a convolutional autoencoder, achieving 94.8% detection with 7.9% false positives.

Results

The logarithmic NNHG formulation (Eq. 3) substantially improves numerical robustness across fractional orders $\alpha \in [0.5, 2.0]$ and spectral bases $N \in [32, 256]$. By performing all operations in log-space, the method avoids overflow inherent in classical gamma-based formulations (e.g., $\Gamma(150)^{0.8} \approx 3.16 \times 10^{208}$, close to the IEEE-754 double-

precision limit 1.798×10^{308}). For a representative operator $\alpha = 1.5$ with Chebyshev basis on $[0, 10]$ of size $N = 128$, the classical stiffness matrix yielded $\kappa_{classical} = 4.72 \times 10^{15} > \varepsilon_{machine}^{-1}$, causing loss of precision. The NNHG-based operator (parameters $b = 2.1, \alpha = 0.8, \beta = -1.2, k = 1.5$) produced $\sigma_{max} = 2.41 \times 10^6$ and $\sigma_{min} = 2.30 \times 10^{-2}$, giving $\kappa_{NNHG} = 1.05 \times 10^8$ and $R_\kappa \approx 4.5 \times 10^4$, conditioning improvement, with residuals 3.2×10^{-11} versus non-convergence in the classical case. The log-space evaluations also allow previously impossible computations.

Table 1. Comparison of Classical Gamma Function and NNHG Function Performance

Metric	Classical $\Gamma(x)$	NNHG Function	Improvement Factor
Matrix condition number	8.7×10^{14}	1.9×10^{13}	$45 \times$
Computation time per evaluation (ns)	120	0.8	$150 \times$
Total simulation time (hours)	30.9	0.12	$147 \times$
Numerical overflow occurrences	847	0	Complete elimination

Table 2. Atmospheric Dispersion Prediction Accuracy for Classical vs. SAMUIG Models

Distance Downwind (m)	Experimental C (ppm)	Classical Model (ppm)	SAMUIG Model (ppm)	Classical Error (%)	SAMUIG Error (%)

10	4,850	5,420	4,920	11.8	1.4
25	2,340	2,890	2,410	23.5	3.0
50	1,120	1,580	1,090	41.1	2.7
75	730	1,020	748	39.7	2.5
100	478	720	461	50.7	3.7
150	260	395	268	51.9	3.0
200	140	225	136	60.7	2.9
Mean absolute percentage error	—	—	—	39.9	2.7

Table 3: Complete System Integration Performance Comparison,

Metric	Classical Methods	SAMUIG Only	SAMUIG + AI	AI Benefit vs SAMUIG
Computation time (hours)	39.7	5.4	0.73	7.4 × faster
Real-time prediction	<i>N/E</i>	<i>N/E</i>	0.18	Enables control
Capture efficiency (%)	72.0	80.1	87.4	+9.1% absolute
Breakthrough prediction error (%)	21.2	6.7	2.9	2.3 × better
Annual profit per facility (\$k)	220	1,188	2.156	+81%
Lives saved per year	48	66	75	+14%
Operator training time (weeks)	6	6	1.5	-75%
Unplanned shutdowns per year	12	8	0.4	-95%

A neural NNHG surrogate reduces inference latency to 0.78 ns/sample on an NVIDIA V100 (batch 10,000), achieving a $152 \times$ speedup over exact C++/GMP evaluation. For 2.31×10^{10} evaluations, runtime drops from 45.7 min to 18 s , with mean relative error 1.18×10^{-3} ; rare high-error cases (0.14%) are corrected via residual triggers at negligible cost.

The PINN surrogate predicts full 3-D, 1-h concentration fields ($26.2 \times 10^6 \text{ outputs}$) in 0.183 s versus 5.4 hrs for the SAMUIG solver, yielding a 1.06×10^5 speedup and enabling real-time optimization. Across 500 scenarios, average MAPE is $4.77\% \text{ } CH_4 = 3.82\%, CO_2 = 4.21\%, CO = 6.84\%, NO_x = 8.12\% \text{ and Avg} = 4.77\%$, with modest boundary (7.3%) and temporal error growth $\left(\frac{\partial \text{MAPE}}{\partial t} \approx 0.0015\%/\text{s} \right)$.

The reinforcement-learning controller outperforms MPC and heuristic strategies over 1,000 episodes, achieving methane capture of $87.14\% \pm 2.18\%$ and delivering a net economic gain of $\$266,400/year$ relative to MPC.

Discussion

SAMUIG-AI framework provides a coherent and effective fusion of stable fractional calculus, NNHG-based numerical conditioning, and modern AI. The reduction in conditioning from $\kappa_{classical} = 4.72 \times 10^{15} \rightarrow \kappa_{NNHG} = 1.05 \times 10^8$ constitutes a qualitative mathematical breakthrough, resolving the long-standing instability of gamma-based fractional operators (Diethelm, 2010). The log-space definition (Eq. 3) ensures all intermediate operations remain within floating-point range, unlike the direct form (Eq. 2) which forms enormous intermediate values before cancellation. This transformation plays a role analogous to historical logarithmic computation: not

merely increasing convenience but preserving numerical representability.

Crucially, this stability is not isolated; it enables the entire SAMUIG-AI pipeline. Stable fractional operators provide physically faithful memory kernels, which improve the training of PINN surrogates; fast surrogates enable large-scale RL optimization; and optimized policies feed back into improved physical operation. The architecture thus forms a closed innovation loop linking mathematics, modeling, and AI.

Conclusion

The SAMUIG-AI framework unifies the stable NNHG formulation (Eq. 3) with fractional calculus, Petrov–Galerkin spectral element methods, Njoseh–Mamadu polynomials with Jacobi-poly-fratonomials, PINNs, and reinforcement learning to deliver a robust, high-performance modelling and control architecture. Applied to gas-flare control, the system achieved 87.4% capture efficiency, generating $\$2.156M$ annual profit

per facility and preventing ~75 pollution-related deaths per year, with a 3.67-year payback period. Future work should extend the framework to carbon capture, water treatment, and pharmaceutical manufacturing while exploring adaptive fractional orders, uncertainty quantification, and transfer-learning-enabled deployment across facilities.

Conflict Of Interest

The Authors declare no financial or personal conflicts of interest regarding this research.

References

Atangana, A. and Koca, I. (2016). Chaos in a simple nonlinear system with Atangana–Baleanu derivatives. *Chaos, Solitons & Fractals*, 89: 447–454.

Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J.J. (2012). Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore.

Cushman, J.H. and Ginn, T.R., (2000.) Fractional kinetics in porous media: anomalous transport and memory effects. *Water Resources Research*, 36(2), 435–448.

Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin.

Edwards, P.M., Brown, S.S. and Roberts, J.M. (2023). Advances in atmospheric oxidation chemistry and air quality modelling. *Atmospheric Chemistry and Physics*, 23(1): 755–788.

Elvidge, C.D., Zhizhin, M., Baugh, K. and Hsu, F-C. (2016). Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. *Energies*, 9(1): 14.

Euler, L. (1740). De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt. *Commentarii Academiae Scientiarum Imperialis Petropolitanae*, 5: 36–57.

Garrappa, R. (2011). On linear stability of predictor–corrector algorithms for fractional differential equations. *International Journal of Computer Mathematics*, 88(8): 1772–1785.

Garrappa, R., (2015). Numerical evaluation of two and three parameter Mittag–Leffler functions. *SIAM Journal on Numerical Analysis*, 53(3), 1350–1369.

Grande, C.A. and Rodrigues, A.E. (2005). Electric swing adsorption for CO₂ removal from flue gases. *International Journal of Greenhouse Gas Control*, 1(2): 161–171.

He, K., Zhang, X., Ren, S. and Sun, J., (2016). Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks*, 2(5), 359–366.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and Yang, L., (2021). Physics-informed machine learning. *Nature Reviews Physics*, 3, 422–440.

Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.

Kingma, D.P. and Ba, J., (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Li, C. and Zeng, F. (2015). Numerical methods for fractional calculus. *Applied Mathematical Modelling*, 39(8): 4590–4606.

Magin, R.L. (2012). Fractional calculus models of complex dynamics in biological tissues. *Computers & Mathematics with Applications*, 64(10): 3190–3202.

Mainardi, F., (2010). Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific.

Mamadu, J.N. and Njoseh, I.N., (2016). Numerical Solutions of Fifth Order Boundary Value Problems Using Mamadu-Njoseh Polynomials. *Science World Journal* 11 (4), 21–24.

Mamadu, J.N. & Njoseh, I.N. (2016). A class of orthogonal polynomials for fractional differential equations. *Journal of Applied Mathematics and Computational Mechanics*, 15(3), pp. 45–63.

Meerschaert, M.M., Benson, D.A., Scheffler, H.-P. and Baeumer, B., (2006). Stochastic solution of space-time fractional diffusion equations. *Physical Review E*, 65, 041103.

Metzler, R. and Klafter, J., (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. *Physics Reports*, 339(1), 1–77.

Odibat, Z.M. and Shawagfeh, N.T. (2007). Generalized Taylor's formula. *Applied Mathematics and Computation*, 186(1): 286–293.

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego.

Rahimpour, M.R. and Jokar, S.M. (2012). Feasibility of flare gas recovery in South Pars gas complex. *Journal of Natural Gas Science and Engineering*, 4: 35–43.

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378: 686–707.

Sun, Y., Li, J. & Wang, Z. (2009). Fractional adsorption–desorption kinetics in porous media. *Chemical Engineering Science*, 64(20), pp. 4259–4267.

Sun, H., Zhang, Y., Baleanu, D., Chen, W. and Chen, Y. (2018). A new collection of real-world applications of fractional calculus

in science and engineering. *Communications in Nonlinear Science and Numerical Simulation*, 64: 213–231.

Turns, S.R., (2011). An introduction to combustion: concepts and applications. 3rd ed. New York: McGraw-Hill.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M. and de Freitas, N., (2016). Dueling network architectures for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning (ICML), 1995–2003.

Westbrook, C.K. and Dryer, F.L., (1981). Chemical kinetic modeling of hydrocarbon combustion. *Progress in Energy and Combustion Science*, 10(1), 1–57.

Westerlund, S. & Ekstam, L. (1994), ‘Capacitor theory’, *IEEE Transactions on Dielectrics and Electrical Insulation*, 1(5), pp. 826–839.

Zayernouri, M. and Karniadakis, G.E., (2013). Fractional Sturm–Liouville eigenproblems: theory and numerical approximation. *Journal of Computational Physics*, 252, 495–517.