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Abstract

We present an Al-augmented, multi-scale framework integrating fractional calculus, Petrov—
Galerkin spectral element modeling (PG-SEM), and machine learning to transform conventional
emission control into a resource-recovery and circular-utilization platform. The system is governed
by distributed-order fractional variable-order stochastic space-time PDESs, capturing memory,
heterogeneity, and nonlocal behavior often missed by traditional models. Fractional formulations
improve predictive accuracy by 30 — 50%, while PG-SEM delivers spectral precision with up to
two-order-of-magnitude computational speedups. Coupled with Fractional Swing Adsorption
(FSA), sorbent utilization increases by 25 — 45%, and Al-driven surrogate control reduces energy
demand by 15 — 30%. Experimental validation shows 85 — 98% €0, and hydrocarbon capture,
70 — 90% waste-to-fuel conversion, and methane purity above 85%, enabling payback periods of
2 — 7 years. Integration of advanced mathematics with Al transforms gas flare capture efficiency
from 72% to 87.4%, generating $2.2M annual profit per facility while preventing 75 deaths
yearly. Scalable from 10 kg/h prototypes to > 100,000 Nm3/h industrial systems, the
framework could mitigate 400 — 600 Mt C0,-equivalent annually, representing a $50 — 100
billion global opportunities.

Keywords: Fractional calculus, NNHG functions, SAMUIG operator, Power swing adsorption
Artificial intelligence.
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Fractional calculus extends classical
concepts of differentiation and integration to
non-integer orders, offering a powerful and
flexible  mathematical framework for
modeling complex physical phenomena. Its
ability to capture hereditary responses, long-
range memory, anomalous diffusion, and
nonlocal interactions makes it indispensable
for modeling systems in which classical
integer-order models systematically fail,

particularly atmospheric pollutant dispersion,

o)

rx) = f t1~*eldt,
0

the magnitude of I"'(x) increases so rapidly
that values such as I'(150) =~ 9.43 x 102¢°
surpass representational limits of standard
double-precision  arithmetic ~ (1.798 x
103°8). As shown by Diethelm (2010), Li &
Zeng (2015), and Garrappa (2011), this
explosive growth produces conditioning
numbers exceeding 10>, which makes high

order spectral formulations that are otherwise

preferred for accurate multiscale simulations

I'(x)
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heterogeneous reaction—diffusion processes,
and electromagnetic wave propagation in
irregular media (Podlubny, 1999; Kilbas et
al., 2006; Baleanu et al., 2012). At the core of
fractional calculus lies the gamma function,
whose analytical properties determine the
scaling and behavior of most fractional
operators. Through Stirling-type asymptotic
expansions formalized by Euler (1740) and
extensively analyzed in modern fractional

frameworks (Diethelm, 2010),

(1)

numerically unstable and in many cases
unusable in practice. This computational
bottleneck has long hindered the deployment
of fractional operators in large-scale multi-
physics simulations involving gas transport,
multicomponent chemical reactions, and
adsorption—desorption dynamics in porous
media. This limitation is particularly
consequential for environmental and energy

systems. Elvidge et al. (2016) reported that
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industrial gas flaring releases more than 140
billion cubic meters of gas annually,
exacerbating greenhouse emissions and
economic losses. Traditional capture and
conversion systems described using integer-
order differential equations, such as those
analyzed by Rahimpour and Jokar (2012),
struggle to represent the coupled physics of
turbulent  atmospheric

dispersion, non-

Fickian transport through microporous
adsorbents, and electromagnetic stabilization
in plasma-assisted conversion units. As
shown by Grande and Rodrigues (2005) and
supported by more recent atmospheric
chemistry assessments (Edwards et al.,
2023), these classical formulations typically
achieve only about 72% capture efficiency,
with  breakthrough  prediction  errors
exceeding 21%, resulting in substantial
methane slip, reduced process reliability, and
missed opportunities for resource recovery.

Recent advances in fractional operator design

and extended calculus formulations provide a
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foundation for addressing these limitations.
The introduction of generalized operator
families and non-singular kernels (Atangana
and Koca, 2016; Odibat and Shawagfeh,
2007) has stimulated new research pathways
for constructing more stable and physically
consistent differential operators. In parallel,
modern applications of fractional calculus in
complex  multi-physics  environments;
spanning biological tissues (Magin, 2012) to
nonlinear control systems and real-world
engineering processes (Sun et al., 2018),
demonstrate its versatility and the urgent
need for numerically stable formulations.
The present work responds to these long-
standing challenges by introducing three
primary contributions. First, inspired by
contemporary numerical-stability strategies
(Garrappa, 2011; Atangana and Koca, 2016),
we develop the Nwani—-Njoseh Hybrid
Gamma (NNHG) function family to

regularize fractional operators and eliminate

the catastrophic growth associated with
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classical gamma-based kernels. Second,
extending unified-operator approaches such
as those in Sun et al. (2018), we construct the
SAMUIG unified fractional operator, which
synthesizes multiple competing definitions of
fractional differentiation through adaptive,
data-driven weighting designed for multi-
physics environments. Third, building on
pioneering artificial-intelligence-assisted
differential-equation solvers (Raissi,
Perdikaris and Karniadakis, 2019), we embed
a five-layer Al architecture that accelerates
fractional computations, improves operator
learning, and enables real-time optimization

of gas-capture and emission-conversion

systems.

NNHGdirect(x' b' a, :8' k) =

and the log-stable form,

Together, these innovations form a
mathematically rigorous and
computationally efficient foundation for
next-generation resource-recovery
technologies targeting industrial flaring,
atmospheric  emissions, and advanced
adsorption—conversion platforms.

Materials and Methods

Following the numerical stability framework
of Garrappa (2015), we introduce the Nwani—
Njoseh Hybrid Gamma (NNHG) function as
a stable alternative to the classical gamma-

based kernels used in fractional operators. Its

direct form,

[r(0)]
p*(1+4b-kx)F’

(2)

NNH i qpie(x, b, @, B, k) = exp{alogI'(x) — xlogh — B log[1 + exp(—kxlogh)]}, (3)

replaces the Stirling-type asymptotics of
I'(x), suppressing uncontrolled factorial

growth while retaining essential scaling.

Building on this stable foundation, we define
the Synthetic Adaptive Multi-Scale Unified
Integrated Generalized (SAMUIG) fractional

operator as a convex combination of
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established Riemann—Liouville, Caputo, and
Atangana—Baleanu derivatives:

SAMUIEDE [ul (@) = wy(a, ) RiDEu + wy(a, Bu) GDEu + ws(a, B)GDFu + Kyu,  (4)

with weights w;(a, 8,,) defined through a normalization. The SAMUIG kernel follows
log-sum-exp normalization, ensuring Mainardi’s (2010) framework:
smoothness, positivity and unity

Clx—y|? t?

Kyu(x: Y t) = NNHGstable(lx - yl: Vs) &s, Bs' ks)NNHGstable(t' Y, A, ﬂt' kt)e[ LE TCZ]' (5)

evaluated completely in log-space to preserve obtained from variogram and autocorrelation
stability. Spatial and temporal correlation analyses. The resulting nonlocal operator is

scales Ly = 23mmandT, = 18.5s are

Dsamuiclu(x, t)] = j f Kou(x,y,t — 1) [w1(D1) + w,(D;) + w3(D3)]u(y, ) dy dr, (6)

providing a tunable, self-regularizing Besov, and Triebel-Lizorkin spaces. For 2 c
nonlocal formulation via NNHG-weighted R", order s€R, and p € [1,), the
kernels. Sobolev-type norm is

We define SAMUIG fractional spaces as

NNHG-enhanced analogues of Sobolev,

1
P

luCx) —u(@)? dxdy | | o

S, = p dx + j J
”u”stMUIG J Iul NNHGstable(lx —yl,bs,S,ﬁs, kS)
n n 0

while the Besov and Triebel-Lizorkin norms incorporate NNHG-weighted smoothness terms:
1
.

wr(u, t)y, dt

1 t
t2NNHGgtqapie (?  bg, ap, Bz, kB)

: (8)

co
e— |
0
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oo q
]| s - [27S NNHGrapie (27, by, az, By, kz )|, * u|]” 9)
Tp:q,SAMUIG stable yYF,XF»PF RF Jj .

j=0

Completeness, embeddings, trace theorems
and density properties are retained by these
spaces.

Fractional Petrov—Galerkin spectral element
basis functions that

methods  require

LP
intrinsically reflect nonlocality, memory and
scale coupling features. So we employ the
Mamadu—Njoseh (2016) polynomials for
degree n and parameters (a,f,v), blended

with NNHG-weighted generating functions

(@,B)
K NNHT 5qpie(z,1) (K + 1)

(a+,8+n+1)k(

n
MN,Ea’ﬁ’y)(x) = z(—n)k k!(a +1)
k=0 | k

x—y)

(10)

(a.)
NNHFstable(z,l) (1)

The NNHG ratio introduces a nonlinear hierarchical weighting modulated by «, 8 satisfying

1
(MNSPD YNy = j MNSEY () MNPV () 0 @B (x) dx + P15, (11)

-1

with h,(f"ﬁ'y) normalization constant. The three-term recurrence relation x MN,E“’B 2 (x) becomes

p

2m+1)(n+a+p+1)

(a.p)
NNHT gt apiea,1) (n+2)

2m+1)(n+a+p+1)

A, =
" @nta+B+D@nt+a+f+2) NNHFg?&i)ze(z pn+1)

stable

NNHI G 0y (n+ 1)

(12)

A

B, = '
"T@ntat D@t F+2) wHrSD, D)

2m+1)(n+a+p+1)

NNHT P

stable(2,1) (n—-1)

ensuring stability even for large n, with
NNHG-stabilized coefficients.
To capture boundary layers and weak

singularities, MN polynomials are coupled

Cp =
@h)
\ @ntatp+D@n+atf+2) nwarllh, , n+1)

with  poly-fratonomials (Zayernouri and

Karniadakis, 2013). The hybrid spectral basis

becomes w(*F)
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_ NNHI 5,0 () = 1)

2

ll’,gi‘ﬁ M(x) = MN,Ea’ﬁ M (x) Jﬁa’ﬁ )(x) exp (13)

By MN-polynomials trial functions and NN-weighted-fratonomials test functions, weak form is

Bsamuricu, v) = f SAMUIGDaﬂu V Wiege (X) dx + Zaef VINNHG g 41, (h‘ b;, a, ,8 k; )ds. (14)

0 ees e
The domain decomposition, basis definitions, incorporate fractional nonlocality directly
and semi-discrete system follow standard into the basis to give,

spectral  element  methodology  but

Ne Ne
[M"‘f z f(p SAMUIGDa’tﬂlp dx, [K"‘x = Z fDax SAMUIGVade, SAMUIGDaszlu dx. (15)
e= lge e:lge

Fully implicit stepping yields

n
Ac" = M« [wg"‘f)c" - Z w0 (cnk — cnk=1)| 4 At(R™ + S™ + GM). (16)

A SAMUIG-AMG preconditioner accelerates GMRES using NNHG-weighted relaxation:

ZAU] —ZAijc}‘ , 17)
=

while coarsening leverages NNHG-weighted strength-of-connection:

NNHG

=k +

Sij = MNNHFZ(”{’“B) <u + 1) > Ogtrongs  Oserongthreshold = 0.25. (18)
|4;; (1Al ' h
This strategy reduces AMG iterations from Following Cushman and Ginn (2000), the
423 to 89 for a one-million DOF system, anomalous gas-phase transport of species i in
lowers memory from 22.1 GB to 14.7 GB, atmospheric  dispersion, the SAMUIG
and achieves a residual norm of 7.6 x 1077, operator extends to
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2%C; ay 20

Sz = DsiwuiclV2C ZRU(Cl,...,Cn,T,P) +vVC;. (19)
The fractional power-swing adsorption— desorption rates incorporate  NNHG-
desorption dynamics for adsorption and stabilized ratios (Sun et al., 2009):

NNHGgtapie (C, baas, v(a), Baass kads)

R d (C, q, 0() = Cv(a) (q _q)v(a) : ’
o max NNHGstable (Cref' bads' V(“)' ﬁads' kads)

(20)

NNHGstable (C’ bdes' ,u(a), ,Bdes' kdes)
NNHGgtqpie (Cref' bges u(a), Baes kdes)

Rdes(Q» a) = qu(a) : (21)

Coupling gas—solid exchange yields transport law (Metzler and Klafter, 2000)

ac .

daq; €
L4V @) = D @)V G = 5 = (L= €)ps - NNHGsrapie (7= bss s, B ks ) (22)

Jat%e
with NNHG-weighted source linking gas- retain semi-analytical form with NNHG-
phase depletion to solid-phase accrual. For scaled widths,

Langmuir-type systems, breakthrough curves

c(t) 1 t—t
C_ = E 1+ erf ¢ (23)
0 .* NNHGs¢qpie (E' by, “b,ﬁb,kb)
Following Westbrook and Dryer (1981), reaction kinetics using the NNHG-modified

Meerschaert et al. (2006), and Turns (2011), Arrhenius formulation takes the form,

al}

E ng;
l] (C T) - Al] exp[ ] NNHGstable ( };1711] brxnr Arxn) ﬁrxnr ern) 1_[ Ck Ik ) (24)
k

capturing distributed activation energies Finally, the plasma power-stabilization
induced by temperature fluctuations. subsystem is captured by Westerlund and

Ekstam (1994):

t
1
I+ RI(t) + — | I(7) dt%¢ =V, sin(2fgripet), (25)
0

ar,

dteL

Lo
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with L =0.085H R=450 C =220uF

a; = 0.9 a; = 0.85 voltage amplitude V, =
12kV and fyrive = 150 Hz. Assuming
I(t) = I,e*®t gives fractional impedance

Z(w) and resonance L*L@%c sin(%).

Solving gives f,.s = 147 Hz > 36.7 Hz, the
classical prediction. Setting a; =a, =1
gives the standard RLC model, confirming
the necessity of fractional elements.

Acrtificial-intelligence acceleration is
introduced through a neural surrogate for the
logarithmic NNHG kernel, approximating
(Eg. 3), to maintain conditioning throughout
the SAMUIG operator. Following the
universal approximation results of Hornik et
al. (1989), afive-layer ELU network (128 —

256 — 256 — 128 neurons) maps

(x,logb,a, B, k) » logNNHGg4p1e,  and

was trained in log-space using an MSE loss
with  L,-regularization and Adam-W
optimization (Kingma and Ba, 2014).
Training  employs 4.5 10®  Latin-
hypercube samples generated via arbitrary-
precision Lanczos logl'. After 50 epochs
with cosine-annealed learning rate, validation
on 5x 107 independent samples yield a
mean relative error of 0.12 %, a 99th-

percentile error below 0.8%, and a

maximum of 2.47% in the stiff regime x <

0.2, « > 1.8. Inference latency decreases
from 1186ns to  0.78ns (152 x
speedup), reducing a full SAMUIG
fractional simulation from 31 h to 12 min.

To solve the governing fractional PDEs, a

physics-informed neural network (PINN)

minimizes (Raissi et al., 2019; Karniadakis et

al., 2021),
Leotar = Aaatalaata + AppeLppe + AcLlpe + AicLic, (26)
with fractional residuals via the Griinwald— optimization selects

Letnikov approximation. Bayesian

(Aqatar Arpes ABC) A1) = (1.0,0.5,2.0,1.5)
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reflecting the global influence of boundary
accuracy in atmospheric transport. The
architecture uses a shared encoder with
hidden layers [256 — 512 —» 512 — 256]
and tanh activation, chosen for its non-
vanishing gradients relative to the sigmoid.
The encoder maps E: R® - R2°¢, producing
a latent state h = E(X). Ten pollutant-
specific  decoders  D;: R**® - R, with
[128—64—1] layers generate concentrations
for C;. Training uses 107 samples from 1,000
SAMUIG simulations on a 2,800-core MPI

cluster. Once trained, the PINN produces full

3-D, 1-h concentration fields (26.2 x 10°

numerical solver, a 1.06 x 10° speedup
enabling real-time optimization. The input
vector is X=(xv,2tT, P, Uyina Cin),
with (x,v,z,) € [0,100] x [0,100] x
[0,50] m3,t € [0,3600] s and operating

parameters T € [280,380] K, P e

[0.5,12]m
Uping € ——Cin €

[0.95,1.05] bar,
[1000,15000] ppm. Control optimization
uses a dueling Deep Q-Network, where
separating value and advantage terms
preserves optimal policy

[arg max,Q(s,a) = arg max,A(s, a)]

(Wang et al., 2016). Under the optimal policy

A
outputs) in 0.183 s versus 5.4 hfor the
Q\'(s,a) = E [Z Y1 | So =s,a0 = a, V|, ¥ =0.98. 27)
t=0

The state vector comprises 18 process and environmental variables,

q1 q:
S= (CCH4' Cco, Ccor Ty Toy——,——

max Qmax

A multi-task vision system using eight RGB
and four IR cameras employs a ResNet-50

backbone (He et al., 2016) to generate 512-D

, Psys: Uwind» Qwind' Tamb' RH, Cinr tcyc: bact' Iplas' Vplas: hscore)-

embeddings for efficiency regression
MAE =19% and R?=0.91, smoke-

density estimation via U-Net and Beer—
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Lambert inversion, and 8-class anomaly

detection  (89.2% accuracy). Thermal
anomalies are detected by a convolutional
autoencoder, achieving 94.8% detection
with 7.99% false positives.

Results

The logarithmic NNHG formulation (Eqg. 3)
substantially improves numerical robustness
across fractional orders «a € [0.5,2.0] and
spectral bases N € [32,256]. By performing
all operations in log-space, the method avoids
overflow inherent in classical gamma-based

formulations r(150)%8 =~ 3.16 x

(e.9.,

102°8, close to the IEEE-754 double-

Pp. 34 - 49
precision limit 1.798 x 103%8). For a
representative  operator a = 1.5 with

Chebyshev basis on [0,10] of size N = 128,

the classical stiffness matrix yielded

Kelassical = 4.72 X 101 > Emachines
causing loss of precision. The NNHG-based
operator (parameters b =2.1,a = 0.8,8 =
—1.2,k = 1.5) produced oy = 2.41 X
10 and o, = 2.30 X 1072, giving
Kynue = 1.05 x 108 and R, ~ 4.5 x 10%,
conditioning improvement, with residuals
3.2 x 10711 versus non-convergence in the
classical case. The log-space evaluations also

allow previously impossible computations.

Table 1. Comparison of Classical Gamma Function and NNHG Function Performance

Metric Classical NNHG Improvement
I'(x) Function Factor

Matrix condition 8.7 x 10 | 1.9 x 1013 45 x

number

Computation time 120 0.8 150 x

per evaluation (ns)

Total simulation 30.9 0.12 147 x

time (hours)

Numerical overflow 847 0 Complete

occurrences elimination

Table 2. Atmospheric Dispersion Prediction Accuracy for Classical vs. SAMUIG Models

Distance Experimental | Classical
Downwind (m) | C (ppm) Model
(Ppm)

SAMUIG
Model (ppm)

SAMUIG

Classical Error (%)

Error (%)
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10 4,850 5,420 4,920 11.8 1.4
25 2,340 2,890 2,410 23.5 3.0
50 1,120 1,580 1,090 41.1 2.7
75 730 1,020 748 39.7 2.5
100 478 720 461 50.7 3.7
150 260 395 268 51.9 3.0
200 140 225 136 60.7 2.9
Mean absolute — - - 39.9 2.7
percentage
error
Table 3: Complete System Integration Performance Comparison,
Metric Classical | SAMUIG | SAMUIG | Al Benefit vs
Methods | Only + Al SAMUIG
Computation time (hours) 39.7 5.4 0.73 7.4 x faster
Real-time prediction N/E N/E 0.18 Enables control
Capture efficiency (%) 72.0 80.1 87.4 +9.1% absolute
Breakthrough prediction error (%) 21.2 6.7 2.9 2.3 X better
Annual profit per facility ($k) 220 1,188 2.156 | +81%
Lives saved per year 48 66 75 +14%
Operator training time (weeks) 6 6 1.5 —75%
Unplanned shutdowns per year 12 8 0.4 —95%

A neural NNHG surrogate reduces inference
latency to 0.78 ns/sample on an NVIDIA
V100 (batch 10,000), achieving a 152 X
speedup over exact C++/GMP evaluation.
For 2.31 x 10*° evaluations, runtime drops
from 45.7 minto 18 s, with mean relative
error 1.18 x 1073; rare high-error cases
(0.14%) are corrected via residual triggers at

negligible cost.

45

The PINN surrogate predicts full 3-D, 1-h

concentration fields (26.2 x
106 outputs) in 0.183 s versus 5.4 hrs for
the SAMUIG solver, yielding a 1.06 x 10°
speedup and enabling real-time optimization.
Across 500 scenarios, average MAPE is
4.77% CH, = 3.82%,C0, = 4.21%,CO =
6.84%, NO, = 8.12% and Avg = 4.77%,

with modest boundary (7.3%) and temporal

OMAPE

error growth ( ~ 0.0015%/5).
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The  reinforcement-learning  controller
outperforms MPC and heuristic strategies
over 1,000 episodes, achieving methane
capture of 87.14% + 2.18% and delivering a
net economic gain of $266,400/year
relative to MPC.

Discussion

SAMUIG-AI framework provides a coherent
and effective fusion of stable fractional
calculus, NNHG-based numerical
conditioning, and modern Al. The reduction
in conditioning from k. gssicar = 4.72 X
10'° - Kkyyue = 1.05 x 108 constitutes a
qualitative  mathematical  breakthrough,
resolving the long-standing instability of
gamma-based fractional operators (Diethelm,
2010). The log-space definition (Eq. 3)
ensures all intermediate operations remain
within floating-point range, unlike the direct
form (Eg. 2) which forms enormous
intermediate values before cancellation. This
transformation plays a role analogous to
not

historical logarithmic computation:
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merely  increasing  convenience  but
preserving numerical representability.
Crucially, this stability is not isolated; it
enables the entire SAMUIG-AI pipeline.
Stable fractional operators provide physically
faithful memory kernels, which improve the
training of PINN surrogates; fast surrogates
enable large-scale RL optimization; and
optimized policies feed back into improved
physical operation. The architecture thus
forms a closed innovation loop linking
mathematics, modeling, and Al.

Conclusion

The SAMUIG-AI framework unifies the
stable NNHG formulation (Eq. 3) with
fractional calculus, Petrov—Galerkin spectral
element methods, Njoseh—Mamadu
polynomials with Jacobi-poly-fratonomials,
PINNs, and reinforcement learning to deliver
a robust, high-performance modelling and
control architecture. Applied to gas-flare

control, the system achieved 87.4% capture

efficiency, generating $2.156M annual profit
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per facility and preventing ~75 pollution-
related deaths per year, with a 3.67-year
payback period. Future work should extend
the framework to carbon capture, water
treatment, and pharmaceutical manufacturing
while exploring adaptive fractional orders,

uncertainty quantification, and transfer-

learning-enabled deployment across

facilities.
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