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ABSTRACT 

 

The increase in vehicles in cities poses considerable social issues and obstacles. As automobiles 

and their devices generate more data, Vehicular Ad Hoc Networks (VANET) can help enhance 

network performance. VANETs provide connectivity between vehicles and infrastructure, 

facilitating the exchange of information and the sharing of resources. To support VANETs, 

Vehicular Cloud Computing (VCC) leverages cloud concepts in this environment. Vehicles in 

the Vehicular Cloud processing (VCC) network frequently seek resources such as processing 

power, bandwidth, and storage, which they (vehicles) are unable to process on their own due 

to resource limitations. They seek these services, which are sometimes provided, sometimes 

blocked because the resource is already in use by another vehicle, and sometimes rejected 

owing to a shortage of available resources. In the same circumstance, some resources may 

remain idle simply because no proper technique was employed to allocate these resources to 

the cars, causing a challenge in VCC. This study introduces the Cooperative Particle Swarm 

Optimization (CPSO) Algorithm, an enhanced variant of Particle Swarm Optimization (PSO) 

resource allocation mechanism for vehicular clouds. The technique employs metaheuristics to 

optimize search and allocate resources in a vehicular cloud. A fog-based paradigm to help with 

the allocation process was established. The CPSO was compared to four different algorithms: 

MARIA, GREEDY, FRACTAL, and WORST. During the comparison process, we consider the 

number of blocked, attended, and denied services, as well as throughput. Simulation results 

indicate that the CPSO outperformed other techniques in all four performance aspects: blocking 

fewer, attending more, rejecting fewer services and increasing throughput. 

INTRODUCTION 

People and companies have required access 

to computer resources such as servers, 

storage, databases, networking, software, 

and analytics over the internet rather than 

relying on local infrastructure or personal 

devices (Obidike et al 2025). With the rapid 

innovations of storage and powerful 

computational processing technologies, as 

well as the achievements of the Internet have 

made computing resources to be affordable at 

reduced pricing and more available than ever 

before (Edje, 2020). These resources are 

provided by cloud service providers and are 

typically hosted in remote data centers. All 

these constitute to Cloud computing. Cloud 

computing has become an active area of 

research over the last decade to date, (Edje 

and Muhammad, 2020).  

Our lives nowadays experience sudden, 

exponential changes in technologies, 

including the ones involved with 

transportation, which directly impacts social 

and economic aspects of human life 

(Quessada et al., 2021). The advancement of 

technology in the Automotive Sector is well 

perceived in recent improvements in the 

safety and experience of passengers traveling 

in road vehicles (Ribeiro et al., 2023). With 

each passing year, there is a significant 

increase in the number of vehicles around the 

world. As a result, the number of connected 

vehicles circulating on the streets among us 

also grows, sharing more data than ever 

before (Meneguette and Marques, 2022). 
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Vehicular Ad-Hoc Network (VANET) are a 

collection of vehicles connecting by wireless 

networks and provide services such as traffic 

management and transportation by applying 

information and communication 

technologies(Kaleibar and Abbaspour, 

2020). In the last years, the Intelligent 

transportation system (ITS) involves the 

Vehicular Ad-Hoc Network (VANET) to 

facilitate data exchange among vehicle 

(Ezzidani et al., 2021). Vehicles will be 

highly connected with the aid of ubiquitous 

wireless networks (Liu et al., 2024). Many 

modern smart vehicles are connected to the 

cloud in Vehicular Cloud Computing (VCC) 

to offer various services, such as information, 

storage, cooperation, computation, and 

infotainment as a service (Pande et al., 2021). 

The transportation industry has also 

encountered new development opportunities, 

presenting a promising prospect for the 

collaborative development of an intelligent 

transportation system that integrates “human 

vehicle-road-cloud” (Li et al., 2024). This 

explosion of new applications has, 

nonetheless, brought new challenges, where 

efficient and effective allocation of 

computational resources for the fulfillment 

of application requirements is at the crux of 

them all (Ribeiro et al., 2022). Due to limited 

storage and computational capabilities such a 

huge amount of multimedia-related data 

cannot be processed on the standalone 

onboard devices (Siddiqi et al., 2020).  

Recently, several researches have considered 

the way to offload the tasks of vehicles to 

vehicle nodes (VNs) with more computing 

resources than the vehicle’s local devices 

(Zhang et al., 2023). To assist the vehicular 

cloud in the management of available 

resources and offer a broader range of 

services, without impacting the network and 

the user experience the paradigm of Fog is 

explored (Pereira et al., 2021). The study has 

a number of resource allocation models that 

have been put out for VCs. The vast majority 

of these models are based on a set of 

methods, being the following among the 

most widely adopted: greedy algorithms, 

meta-heuristics, combinatorial optimization, 

multi-objective optimization, dynamic 

programming and reinforcement learning 

(Ribeiro et al., 2023). In this study, we are 

proposing a resource allocation in vehicular 

cloud computing network based on 

Cooperative Particle Swarm Optimization 

(CPSO) algorithm. This technique will tend 

to tackle the problems of resource allocation 

in vehicular cloud computing. 

MATERIALS AND METHODS 

Analysis of the developed model 

Cooperative Particle Swarm Optimization 

(CPSO) is a population-based metaheuristic 

algorithm that extends traditional Particle 

Swarm Optimization (PSO) by integrating 

the concept of multi-swarm collaboration. 

Van den Bergh and Engelbrecht devised 

CPSO to improve PSO's ability to handle 

complicated, high-dimensional, and 

multimodal optimization problems, which 

frequently trap traditional PSO in local 

optima due to premature convergence. The 

core idea behind CPSO is to divide the 

high-dimensional search space into smaller, 

more manageable subcomponents, which 

are then optimized collaboratively utilizing 

numerous sub-swarms. Each sub-swarm 

optimizes a specific subcomponent of the 

overall solution vector, allowing for a 

divide-and-conquer strategy to the 

optimization issue. 

In classical PSO, each particle represents a 

potential solution in a multidimensional 

search space and modifies its position in 

response to its own and its neighbors' 

experiences. While this strategy is effective 

for low-dimensional problems, it loses 

diversity and prematurely converges in 

high-dimensional landscapes. This 

convergence frequently traps particles in 

local optima, particularly in problems with 

several peaks and valleys in the fitness 

landscape. CPSO overcomes this limitation 

by introducing a cooperative 

coevolutionary strategy that enables each 

subcomponent of the solution vector to be 
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optimized independently while cooperating 

with the rest of the system. 

CPSO operates by breaking the overall 

solution vector into smaller sub-vectors, 

each representing a sub-swarm. For 

example, a solution vector with 

dimensionality D can be divided into K 

subcomponents, each of which may have 

one or more dimensions. Each sub-swarm 

has a population of particles that investigate 

and exploit their own subcomponent of the 

solution. The fitness of each particle in a 

sub-swarm is evaluated by merging it with 

the best-known solutions from other sub-

swarms, resulting in a complete solution 

vector known as the context. This context 

vector functions as a cooperative 

framework, allowing each sub-swarm to 

assess the impact of its changes within the 

context of the overall solution. 

The shared context vector ensures that sub-

swarms cooperate. For each particle in a 

sub-swarm, the context vector is created by 

replacing the relevant piece of the vector 

with the particle's own position and using 

the best-known positions from the other 

sub-swarms for the remaining components. 

The resulting complete solution is then 

assessed using the problem's fitness 

function. If the new solution improves on 

the particle's personal best or the sub-

swarm's overall best, appropriate updates 

are applied. This cooperative technique 

ensures that each sub-swarm optimizes its 

component in relation to the global solution 

space, resulting in better coordinated and 

effective search behavior. 

CPSO has various advantages over normal 

PSO. By breaking down the problem, it 

minimizes the dimensionality of the search 

space that each particle must explore, 

resulting in faster convergence within each 

sub-swarm. The algorithm's cooperative 

character contributes to overall population 

variety, lowering the risk of premature 

convergence and allowing the algorithm to 

more effectively escape from local minima. 

Furthermore, CPSO is modular by design 

and can be efficiently parallelized, making 

it suited for large-scale and distributed 

optimization issues. 

In the domain of cloud computing, 

particularly vehicle cloud computing 

(VCC), CPSO has demonstrated significant 

potential for resolving resource allocation 

issues. VCC environments are 

distinguished by dynamic, mobile, and 

heterogeneous computing nodes, making 

efficient resource allocation important to 

performance. CPSO can be used to 

efficiently allocate computational jobs 

(cloudlets) to virtual machines (VMs), 

control bandwidth distribution, and even 

assign storage resources in such networks. 

In this situation, each sub-swarm can be 

allocated to optimize a specific resource 

type or task segment, and their 

collaboration guarantees that the total 

system performance is optimal. 

From a theoretical standpoint, CPSO is an 

example of cooperative coevolution, a 

broader category of algorithms inspired by 

biological evolution in which many 

populations evolve in tandem. CPSO 

demonstrates how cooperation among 

specialized organisms can result in 

emergent problem-solving capabilities, a 

notion shared by many natural and social 

systems. CPSO's search space 

decomposition and collaborative fitness 

evaluation mechanism make it a reliable 

and scalable solution for a variety of 

optimization challenges. 

Cooperative Particle Swarm Optimization 

is a considerable improvement over 

classical PSO, providing better 

performance in high-dimensional and 

difficult optimization situations. Its 

capacity to partition the search area, 

coordinate many swarms, and retain 

solution variety makes it ideal for real-

world applications like work scheduling, 

resource allocation, and service 

optimization in vehicular cloud systems. As 

computational challenges increase in size 

and complexity, the principles underlying 
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CPSO—modularity, cooperation, and 

contextual evaluation—are likely to remain 

central to the development of next-

generation optimization algorithms. 

Architecture of the developed System 

System architecture is a high-level plan or 

idea that shows how a system is put 

together, what parts it has, how they work 

together, and how they relate to each other. 

It shows how hardware, software, and 

people work together to reach certain goals, 

making sure that the system meets business 

needs, is easy to manage, and works 

quickly and safely. Figure 3.5 shows the 

architecture of the CPSO resource allocator. 

 

 

 

 

 

 

Figure 3.1: Architecture of the developed System 

 

 

Performance Metrics 

Four performance measures are used to 

assess the completed work. They are: 

Accepted Services, refused services, 

blocked services, and throughput. 

1. Accepted Services: This is a metric 

that represents the number of 

service requests that have been 

fulfilled. A high number of attended 

services indicates that the allocation 

policy is efficient in optimizing 

resource allocation, considering the 

evaluated interval. Accepted service 

can be calculated as seen in 

equation 3.1 below 

                                         𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =  
𝑁𝑎𝑐𝑐

𝑁𝑟𝑒𝑞
                                               (3.1)   

Where 𝑁𝑎𝑐𝑐   is the number of 

successfully executed requests and 

𝑁𝑟𝑒𝑞 is the total number of service 

requests 

2. Refused Services: These are the 

services that were prevented from 

allocating their resources in all VCs, 

due to the insufficient resources of 

the VCs to provide such services. 

The services where the evaluated 

algorithm is unable to allocate the 

necessary resources needed for the 

determined service in the cloud. 

Refused service can be calculated as 

seen in equation 3.2 below 

                                         𝑅𝑒𝑓𝑢𝑠𝑒𝑑 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 =  
𝑁𝑟𝑒𝑓

𝑁𝑟𝑒𝑞
                                               (3.2)   

Where 𝑁𝑟𝑒𝑓  is the number of Refused Requests and 𝑁𝑟𝑒𝑞 is the total number of service 

requests 

3. Blocked Services: These 

correspond to the number of times 

that VC cannot attend a service due 

to a lack of resources. It is a metric 

that computes the number of times a 

VC refuses a service request. 

Blocked service can be calculated 

as seen in equation 3.3 below 

                                         𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 =  
𝑁𝑏𝑙𝑘

𝑁𝑟𝑒𝑞
                                               (3.3)   
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Where 𝑁𝑏𝑙𝑘 is the number of 

blocked requests and 𝑁𝑟𝑒𝑞 is the 

total number of service requests 

4. Throughput: This refers to the 

total number of tasks accomplished 

within a given execution time, 

which can be calculated as 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
∑ 𝑀𝐼,𝐽

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
                                          (3.4)                                               

Where ƩMi,j is the number of successfully completed task 

Experimental Setup 

For this experiment, the Manhattan district 

in New York, USA (See map in Figure 3.6), 

was considered. For the district's four RSUs 

(Road Side Units) to be connected to one 

another and be able to interact over a 5G 

network, they are positioned at key 

locations. An Edge Cloud (EC) is placed on 

each RSU and is in charge of overseeing the 

distribution of network computing 

resources. Different quantities of cars are 

taken into consideration for the simulation, 

which is generated based on the simulation 

time in each scenario, which is 2400, 4800, 

and 7200 seconds. As a result, 381 vehicles, 

778 vehicles, and 1175 vehicles were 

produced in each simulation. Additionally, 

it is divided into time slots with 480 

seconds each, making them 5, 10, and 15 

slots respectively for a specific simulation 

duration. 

The Pearson III distribution, which is 

regarded as an advanced gamma pattern 

that can imitate vehicle entrances and exits 

in a heterogeneous manner, was employed 

to simulate vehicle entry and exit in a 

heterogeneous manner. All computational 

resources are assumed to be 100% shared 

by each EC (EC = [100, 100, 100, 100]). 

Processing speed, bandwidth, memory, and 

storage capacity are the shared resources. 

Every vehicle service has the same 

computational resources, and consumption 

figures are produced at random within the 

interval [1, 6], taking into account low-

demand services like multimedia, 

entertainment, security, and text messaging, 

among others. During the simulation, 

artificial data is produced. 33 runs of each 

simulation were conducted, and a 95% CI 

was used. The simulation was developed in 

Python programming language. 

 

Table 3.1: Workload Parameters 

Workloads Parameters Value 

File Size Memory 

Google Cloud Trace Log 5GB 50GB 

 

Table 3.2: Simulation Setup 

Parameters Values 

Urban Scenery City of Manhanttan 

Number of Vehicles 381 – 778 - 1175 

Time per slot 480 seconds 

Time Slots 5 – 10 - 15 

Simulation time 2400 – 4800 – 7200 seconds 

Resource values Synthetic and random of [1,6] 

Vehicle entry and exit Pearson III distribution 
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Number of runs 33 

Confidence interval 95% 

Programming Language Python programming language 

Simulation environment Microsoft visual studio 2022 

RESULTS 

The study developed a system that 

implements the Cooperative Particle Swan 

Optimization Algorithm, which is an 

enhanced version of the PSO Algorithm for 

resource allocation and optimization in 

vehicular cloud computing. This study 

tends to develop a model that resolves the 

problem of slow and premature 

convergence, especially in complex and 

multi-modal environments. The swans 

which divided into sub problems helps to 

prevent premature convergence and 

enhances the adaptability of the algorithm 

to changes. Figure 4.1 shows the flowchart 

of the CPSO algorithm. 

 

System Algorithm 

Algorithm 2: CPSO 

1. Start 

2. Break down problem into subproblems (Swan) 

3. For each Swan 

4.   for each particle i = 1, ..., S do 
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5. Initialize the particle's position with a uniformly distributed random vector: 

xi ~ U(blo, bup) 

6.        Initialize the particle's best known position to its initial position: pi ← xi 

7.        if f(pi) < f(g) then 

8.             update the swarm's best known position: g ← pi 

9.        Initialize the particle's velocity: vi ~ U(-|bup-blo|, |bup-blo|) 

10.    while a termination criterion is not met do: 

11.       for each particle i = 1, ..., S do 

12.            for each dimension d = 1, ..., n do 

13.                 Pick random numbers: rp, rg ~ U(0,1) 

14.                 Update the particle's velocity: vi,d ← w vi,d + φp rp (pi,d-xi,d) + φg rg (gd-xi,d) 

15.            Update the particle's position: xi ← xi + vi 

16.            if f(xi) < f(pi) then 

17.                  Update the particle's best known position: pi ← xi 

18.                  if f(pi) < f(g) then  

19.                      Update the swarm's best known position: g ← pi 

20. Stop 

 

DISCUSSIONS 

In this section, we showed the results gotten 

after our simulations. The developed 

algorithm is experimented on 381, 778, and 

1175 vehicles in simulation time 2400, 

4800, and 7200 seconds. The total number 

of services requested by the vehicles can be 

seen in Table 4.1. The 4 metrics (Accepted 

services, blocked services, refused services, 

and throughput) are used to compare with 

MARIA, FRACTAL, Greedy, and Worst 

algorithms.  

Accepted Services 

Looking at Figure 4.3, we present the 

evaluation of the number of services 

accepted. This metric represents the 

services of the vehicles that we managed to 

allocate in a cloud computing service. In the 

first configuration, with 371 vehicles in the 

scenario, CPSO performed better, 

accepting an average of 346 services, 

followed by MARIA with 301, FRACTAL 

with 288, Greedy with 280 and Worst with 

279. For the second configuration with 778 

vehicles, CSPO accepted 454 services, 

MARIA with 495, FRACTAL with 489, 

Greedy and Worst are tied with 359 though 

the CPSO has less number of accepted 

services than MARIA and FRACTAL but it 

can be seen that it accepted 58.38% of the 

total number of services requested by the 

vehicles at that simulation time. Same 

applies for configuration with 1175 

vehicles where CPSO accepted 543, 

MARIA with 699, FRACTAL with 696, 

Greedy with 412 and Worst with 413. 

CPSO performed in terms of the percentage 

of services accepted. 
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Blocked Services 

Figure 4.4 illustrates the average number of 

blocked services in vehicular clouds. 

Blocked services occur when a vehicular 

cloud attempts to allocate a service but 

lacks the necessary resources. In the 

configuration of 381 vehicles, CPSO 

blocked services the least, with an average 

of 8 blocks. While MARIA, FRACTAL, 

Greedy and Worst has 436, 570, 736, and 

810 blocks respectively. For 778 vehicle 

configurations, CPSO also blocked lesser 

services with 299 blocks while MARIA, 

FRACTAL, Greedy and Worst has 1434, 

1542, 2132, and 2252 blocks. Then with the 

last configuration of 1175 vehicles, The 

CPSO has 604 blocks, MARIA with 2402, 

FRACTAL with 2485, Greedy and Worst 

tied with 4724. 

 

 

 

 

Refused Services 

Figure 4.5 shows the results for refused 

services, which were not assigned in any of 

the VCs due to limited resources. In the 

initial configuration of 381 vehicles, the 

CPSO denied an average of 17 services. 

Figure 4.1: Comparison of Accepted Services 
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While MARIA, FRACTAL, Greedy, and 

Worst denied 80, 86, 101, and 102 services 

respectively. For 778 vehicle 

configurations, the CPSO denied an 

average of 25 services. While MARIA, 

FRACTAL, Greedy, and Worst denied 281, 

282, 419, 419 services. For 1175 vehicle 

configurations, the CPSO denied an 

average of 29 services. While MARIA, 

FRACTAL, Greedy, and Worst denied 472, 

473, 763, 761 services. 

 

 

Throughput 

This metric depicts the accepted service in 

VC per unit time. For the first configuration 

of 381 vehicles, the CPSO has 0.14 services 

per unit time, MARIA has 0.13 while 

FRACTAL, Greedy and Worst has 0.12 

each. For 778 vehicle configuration CPSO 

has 0.09, MARIA and FRACTAL with 0.1, 

while Greedy and Worst is tied with 0.07. 

For 1175 vehicle configuration CPSO has 

0.08, MARIA and FRACTAL with 0.1, 

while Greedy and Worst is tied with 0.06. 

 

Figure 4.4: Comparison for Throughput 

CONCLUSION 

As smart transportation systems, vehicle 

numbers, and technology evolve, smart 

cities face new obstacles to improve their 

services. One of the issues is improving 

vehicle service requests for faster and more 

efficient operations. Cloud computing 

enables speedier service delivery. However, 

limited computational resources necessitate 
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optimizing resource allocation. This paper 

introduces the CPSO, an improved version 

of the bio-inspired PSO algorithm that 

optimizes resource allocation in VANETs. 

The CPSO are easily adaptable to various 

environments and circumstances. 
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