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ABSTRACT

The increase in vehicles in cities poses considerable social issues and obstacles. As automobiles
and their devices generate more data, Vehicular Ad Hoc Networks (VANET) can help enhance
network performance. VANETs provide connectivity between vehicles and infrastructure,
facilitating the exchange of information and the sharing of resources. To support VANETSs,
Vehicular Cloud Computing (VCC) leverages cloud concepts in this environment. Vehicles in
the Vehicular Cloud processing (VCC) network frequently seek resources such as processing
power, bandwidth, and storage, which they (vehicles) are unable to process on their own due
to resource limitations. They seek these services, which are sometimes provided, sometimes
blocked because the resource is already in use by another vehicle, and sometimes rejected
owing to a shortage of available resources. In the same circumstance, some resources may
remain idle simply because no proper technique was employed to allocate these resources to
the cars, causing a challenge in VCC. This study introduces the Cooperative Particle Swarm
Optimization (CPSO) Algorithm, an enhanced variant of Particle Swarm Optimization (PSO)
resource allocation mechanism for vehicular clouds. The technique employs metaheuristics to
optimize search and allocate resources in a vehicular cloud. A fog-based paradigm to help with
the allocation process was established. The CPSO was compared to four different algorithms:
MARIA, GREEDY, FRACTAL, and WORST. During the comparison process, we consider the
number of blocked, attended, and denied services, as well as throughput. Simulation results
indicate that the CPSO outperformed other techniques in all four performance aspects: blocking
fewer, attending more, rejecting fewer services and increasing throughput.

INTRODUCTION research over the last decade to date, (Edje

People and companies have required access and Muhammad, 2020).

to computer resources such as servers,
storage, databases, networking, software,
and analytics over the internet rather than
relying on local infrastructure or personal transportation, which directly impacts social
devices (Obidike et al 2025). With the rapid and economic aspects of human life
innovations  of storage and powerful (Quessada et al., 2021). The advancement of

computational processing technologies, as technology in the Automotive Sector is well
well as the achievements of the Internet have perceived in recent improvements in the

made computing resources to be affordable at safety and experience of passengers traveling
reduced pricing and more available than ever in road vehicles (Ribeiro et al., 2023). With
before (Edje, 2020). These resources are each passing year, there is a significant
provided by cloud service providers and are increase in the number of vehicles around the
typically hosted in remote data centers. All world. As a result, the number of connected
these constitute to Cloud computing. Cloud vehicles circulating on the streets among us
computing has become an active area of also grows, sharing more data than ever

before (Meneguette and Marques, 2022).

Our lives nowadays experience sudden,
exponential changes in technologies,
including the ones involved with
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Vehicular Ad-Hoc Network (VANET) are a
collection of vehicles connecting by wireless
networks and provide services such as traffic
management and transportation by applying
information and communication
technologies(Kaleibar  and  Abbaspour,
2020). In the last years, the Intelligent
transportation system (ITS) involves the
Vehicular Ad-Hoc Network (VANET) to
facilitate data exchange among vehicle
(Ezzidani et al., 2021). Vehicles will be
highly connected with the aid of ubiquitous
wireless networks (Liu et al., 2024). Many
modern smart vehicles are connected to the
cloud in Vehicular Cloud Computing (VCC)
to offer various services, such as information,
storage, cooperation, computation, and
infotainment as a service (Pande et al., 2021).

The transportation industry has also
encountered new development opportunities,
presenting a promising prospect for the
collaborative development of an intelligent
transportation system that integrates “human
vehicle-road-cloud” (Li et al., 2024). This

explosion of new applications has,
nonetheless, brought new challenges, where
efficient and effective allocation of

computational resources for the fulfillment
of application requirements is at the crux of
them all (Ribeiro et al., 2022). Due to limited
storage and computational capabilities such a
huge amount of multimedia-related data
cannot be processed on the standalone
onboard devices (Siddiqi ef al., 2020).

Recently, several researches have considered
the way to offload the tasks of vehicles to
vehicle nodes (VNs) with more computing
resources than the vehicle’s local devices
(Zhang et al., 2023). To assist the vehicular
cloud in the management of available
resources and offer a broader range of
services, without impacting the network and
the user experience the paradigm of Fog is
explored (Pereira ef al., 2021). The study has
a number of resource allocation models that
have been put out for VCs. The vast majority
of these models are based on a set of
methods, being the following among the
most widely adopted: greedy algorithms,

233

Pp. 232 - 242

meta-heuristics, combinatorial optimization,
multi-objective  optimization,  dynamic
programming and reinforcement learning
(Ribeiro et al., 2023). In this study, we are
proposing a resource allocation in vehicular
cloud computing network based on
Cooperative Particle Swarm Optimization
(CPSO) algorithm. This technique will tend
to tackle the problems of resource allocation
in vehicular cloud computing.

MATERIALS AND METHODS

Analysis of the developed model
Cooperative Particle Swarm Optimization
(CPSO) is a population-based metaheuristic
algorithm that extends traditional Particle
Swarm Optimization (PSO) by integrating
the concept of multi-swarm collaboration.
Van den Bergh and Engelbrecht devised
CPSO to improve PSO's ability to handle
complicated,  high-dimensional, = and
multimodal optimization problems, which
frequently trap traditional PSO in local
optima due to premature convergence. The
core idea behind CPSO is to divide the
high-dimensional search space into smaller,
more manageable subcomponents, which
are then optimized collaboratively utilizing
numerous sub-swarms. Each sub-swarm
optimizes a specific subcomponent of the
overall solution vector, allowing for a
divide-and-conquer  strategy to the
optimization issue.

In classical PSO, each particle represents a
potential solution in a multidimensional
search space and modifies its position in
response to its own and its neighbors'
experiences. While this strategy is effective
for low-dimensional problems, it loses
diversity and prematurely converges in
high-dimensional landscapes. This
convergence frequently traps particles in
local optima, particularly in problems with
several peaks and valleys in the fitness
landscape. CPSO overcomes this limitation
by introducing a cooperative
coevolutionary strategy that enables each
subcomponent of the solution vector to be
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optimized independently while cooperating
with the rest of the system.

CPSO operates by breaking the overall
solution vector into smaller sub-vectors,
each representing a sub-swarm. For
example, a solution vector with
dimensionality D can be divided into K
subcomponents, each of which may have
one or more dimensions. Each sub-swarm
has a population of particles that investigate
and exploit their own subcomponent of the
solution. The fitness of each particle in a
sub-swarm is evaluated by merging it with
the best-known solutions from other sub-
swarms, resulting in a complete solution
vector known as the context. This context
vector functions as a cooperative
framework, allowing each sub-swarm to
assess the impact of its changes within the
context of the overall solution.

The shared context vector ensures that sub-
swarms cooperate. For each particle in a
sub-swarm, the context vector is created by
replacing the relevant piece of the vector
with the particle's own position and using
the best-known positions from the other
sub-swarms for the remaining components.
The resulting complete solution is then
assessed using the problem's fitness
function. If the new solution improves on
the particle's personal best or the sub-
swarm's overall best, appropriate updates
are applied. This cooperative technique
ensures that each sub-swarm optimizes its
component in relation to the global solution
space, resulting in better coordinated and
effective search behavior.

CPSO has various advantages over normal
PSO. By breaking down the problem, it
minimizes the dimensionality of the search
space that each particle must explore,
resulting in faster convergence within each
sub-swarm. The algorithm's cooperative
character contributes to overall population
variety, lowering the risk of premature
convergence and allowing the algorithm to
more effectively escape from local minima.
Furthermore, CPSO is modular by design
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and can be efficiently parallelized, making
it suited for large-scale and distributed
optimization issues.

In the domain of cloud computing,
particularly vehicle cloud computing
(VCC), CPSO has demonstrated significant
potential for resolving resource allocation
issues. VCC environments are
distinguished by dynamic, mobile, and
heterogeneous computing nodes, making
efficient resource allocation important to
performance. CPSO can be used to
efficiently allocate computational jobs
(cloudlets) to virtual machines (VMs),
control bandwidth distribution, and even
assign storage resources in such networks.
In this situation, each sub-swarm can be
allocated to optimize a specific resource
type or task segment, and their
collaboration guarantees that the total
system performance is optimal.

From a theoretical standpoint, CPSO is an
example of cooperative coevolution, a
broader category of algorithms inspired by
biological evolution in which many
populations evolve in tandem. CPSO
demonstrates how cooperation among
specialized organisms can result in
emergent problem-solving capabilities, a
notion shared by many natural and social
systems. CPSO's search space
decomposition and collaborative fitness
evaluation mechanism make it a reliable
and scalable solution for a wvariety of
optimization challenges.

Cooperative Particle Swarm Optimization
iIs a considerable improvement over
classical PSO, providing better
performance in high-dimensional and
difficult optimization situations. Its
capacity to partition the search area,
coordinate many swarms, and retain
solution variety makes it ideal for real-
world applications like work scheduling,
resource allocation, and service
optimization in vehicular cloud systems. As
computational challenges increase in size
and complexity, the principles underlying
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CPSO—modularity, cooperation, and
contextual evaluation—are likely to remain
central to the development of next-
generation optimization algorithms.

Architecture of the developed System
System architecture is a high-level plan or
idea that shows how a system is put

Pp. 232 - 242

together, what parts it has, how they work
together, and how they relate to each other.
It shows how hardware, software, and
people work together to reach certain goals,
making sure that the system meets business
needs, is easy to manage, and works
quickly and safely. Figure 3.5 shows the
architecture of the CPSO resource allocator.
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Four performance measures are used to
assess the completed work. They are:
Accepted Services, refused services,
blocked services, and throughput.

1. Accepted Services: This is a metric
that represents the number of

Accepted service =

Where Ng. is the number of
successfully executed requests and
Nyeq is the total number of service
requests

2. Refused Services: These are the
services that were prevented from
allocating their resources in all VCs,

Refused Service =

services indicates that the allocation
policy is efficient in optimizing
resource allocation, considering the
evaluated interval. Accepted service

can be calculated as seen in
equation 3.1 below
Nace (3.1)

req
due to the insufficient resources of
the VCs to provide such services.
The services where the evaluated
algorithm is unable to allocate the
necessary resources needed for the
determined service in the cloud.
Refused service can be calculated as
seen in equation 3.2 below
Nref

req

(3.2)

Where Nyof is the number of Refused Requests and Ny..q is the total number of service

requests

3. Blocked Services: These
correspond to the number of times
that VC cannot attend a service due
to a lack of resources. It is a metric

Blocked Service =
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that computes the number of times a
VC refuses a service request.
Blocked service can be calculated

as seen in equation 3.3 below
Nove (3.3)

req
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Where Ny, is the number of
blocked requests and N, is the
total number of service requests

4. Throughput: This refers to the
total number of tasks accomplished
within a given execution time,
which can be calculated as

XMy

Throughput =

Execution time

(3.4)

Where M is the number of successfully completed task

Experimental Setup

For this experiment, the Manhattan district
in New York, USA (See map in Figure 3.6),
was considered. For the district's four RSUs
(Road Side Units) to be connected to one
another and be able to interact over a 5G
network, they are positioned at key
locations. An Edge Cloud (EC) is placed on
each RSU and is in charge of overseeing the
distribution of network computing
resources. Different quantities of cars are
taken into consideration for the simulation,
which is generated based on the simulation
time in each scenario, which is 2400, 4800,
and 7200 seconds. As a result, 381 vehicles,
778 wvehicles, and 1175 wvehicles were
produced in each simulation. Additionally,
it is divided into time slots with 480
seconds each, making them 5, 10, and 15
slots respectively for a specific simulation
duration.

Table 3.1: Workload Parameters

The Pearson III distribution, which is
regarded as an advanced gamma pattern
that can imitate vehicle entrances and exits
in a heterogeneous manner, was employed
to simulate vehicle entry and exit in a
heterogeneous manner. All computational
resources are assumed to be 100% shared
by each EC (EC = [100, 100, 100, 100]).
Processing speed, bandwidth, memory, and
storage capacity are the shared resources.
Every wvehicle service has the same
computational resources, and consumption
figures are produced at random within the
interval [1, 6], taking into account low-
demand  services like  multimedia,
entertainment, security, and text messaging,
among others. During the simulation,
artificial data is produced. 33 runs of each
simulation were conducted, and a 95% CI
was used. The simulation was developed in
Python programming language.

Workloads Parameters | Value
File Size Memory
Google Cloud Trace Log | 5GB 50GB

Table 3.2: Simulation Setup

Parameters Values

Urban Scenery City of Manhanttan
Number of Vehicles 381 -778 - 1175
Time per slot 480 seconds

Time Slots 5-10-15

Simulation time

2400 — 4800 — 7200 seconds

Resource values

Synthetic and random of [1,6]

Vehicle entry and exit

Pearson III distribution
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Number of runs 33
Confidence interval 95%
Programming Language | Python programming language

Simulation environment

Microsoft visual studio 2022

RESULTS

The study developed a system that
implements the Cooperative Particle Swan
Optimization Algorithm, which is an
enhanced version of the PSO Algorithm for
resource allocation and optimization in
vehicular cloud computing. This study
tends to develop a model that resolves the

problem of slow and premature
convergence, especially in complex and
multi-modal environments. The swans
which divided into sub problems helps to
prevent premature convergence and
enhances the adaptability of the algorithm
to changes. Figure 4.1 shows the flowchart
of the CPSO algorithm.

|

Initialize
parameter and
Population

1

Break down
problems into sub
problems (Swans)

False
While

iteration

Check for subswan

False

rue

|<—

Check for ECs

False

True

| Calculate fitness

Check if

phest and
ghest are

better

Update pbhest
and/or gbest

Initialize
parameter and
Population

+
Update EC,

Velocity and
Position

Return best
Solution

I

Figure 4.1: Flowchart of the developed model

System Algorithm
Algorithm 2: CPSO

Start

For each Swan

1
2.
3.
4 for each particlei =1, ..., S do
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Break down problem into subproblems (Swan)
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5. Initialize the particle's position with a uniformly distributed random vector:

Xi~ U(blo, bup)

6. Initialize the particle's best known position to its initial position: p; < X;
7. if f(pi) <f(g) then
8. update the swarm's best known position: g < pi
9. Initialize the particle's velocity: vi ~ U(-|bup-biol, |bup-bio|)
10. while a termination criterion is not met do:
11. for each particlei=1, ..., Sdo
12. for each dimensiond =1, ..., n do
13. Pick random numbers: rp, rg ~ U(0,1)
14. Update the particle's velocity: vig «<— W Viga + @p 7p (Pid-Xid) + Qg g (€d-Xi.d)
15. Update the particle's position: Xi «<— Xi + vj
16. if (xi) <f(pi) then
17. Update the particle's best known position: p;i «— X;
18. if f{pi) <f(g) then
19. Update the swarm's best known position: g «— p;
20.  Stop
DISCUSSIONS scenario, CPSO  performed  better,

In this section, we showed the results gotten
after our simulations. The developed
algorithm is experimented on 381, 778, and
1175 wvehicles in simulation time 2400,
4800, and 7200 seconds. The total number
of services requested by the vehicles can be
seen in Table 4.1. The 4 metrics (Accepted
services, blocked services, refused services,
and throughput) are used to compare with
MARIA, FRACTAL, Greedy, and Worst
algorithms.

Accepted Services

Looking at Figure 4.3, we present the
evaluation of the number of services
accepted. This metric represents the
services of the vehicles that we managed to
allocate in a cloud computing service. In the
first configuration, with 371 vehicles in the
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accepting an average of 346 services,
followed by MARIA with 301, FRACTAL
with 288, Greedy with 280 and Worst with
279. For the second configuration with 778
vehicles, CSPO accepted 454 services,
MARIA with 495, FRACTAL with 489,
Greedy and Worst are tied with 359 though
the CPSO has less number of accepted
services than MARIA and FRACTAL but it
can be seen that it accepted 58.38% of the
total number of services requested by the
vehicles at that simulation time. Same
applies for configuration with 1175
vehicles where CPSO accepted 543,
MARIA with 699, FRACTAL with 696,
Greedy with 412 and Worst with 413.
CPSO performed in terms of the percentage
of services accepted.
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Figure 4.1: Comparison of Accepted Services

Blocked Services

Figure 4.4 illustrates the average number of
blocked services in vehicular clouds.
Blocked services occur when a vehicular
cloud attempts to allocate a service but
lacks the necessary resources. In the
configuration of 381 wvehicles, CPSO
blocked services the least, with an average
of 8 blocks. While MARIA, FRACTAL,
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w
o
o
o
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Blocked Services

1000

mCPSO mMARIA ®mFRACTAL

0 m . -II I -I
381 778

GREEDY ®WORST

Greedy and Worst has 436, 570, 736, and
810 blocks respectively. For 778 vehicle
configurations, CPSO also blocked lesser
services with 299 blocks while MARIA,
FRACTAL, Greedy and Worst has 1434,
1542, 2132, and 2252 blocks. Then with the
last configuration of 1175 wvehicles, The
CPSO has 604 blocks, MARIA with 2402,
FRACTAL with 2485, Greedy and Worst

tied with 4724.

1175

Cloudlets

GREEDY ®mWORST

Figure 4.2: Comparison for Blocked Services

Refused Services
Figure 4.5 shows the results for refused
services, which were not assigned in any of
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the VCs due to limited resources. In the
initial configuration of 381 wvehicles, the
CPSO denied an average of 17 services.
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While MARIA, FRACTAL, Greedy, and
Worst denied 80, 86, 101, and 102 services
respectively. For 778 vehicle
configurations, the CPSO denied an
average of 25 services. While MARIA,
FRACTAL, Greedy, and Worst denied 281,
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381 778
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282, 419, 419 services. For 1175 vehicle
configurations, the CPSO denied an
average of 29 services. While MARIA,
FRACTAL, Greedy, and Worst denied 472,

473,763, 761 services.

1175

Cloudlets

GREEDY ®WORST

Figure 4.3: Comparison of Refused Services

Throughput

This metric depicts the accepted service in
VC per unit time. For the first configuration
of 381 vehicles, the CPSO has 0.14 services
per unit time, MARIA has 0.13 while
FRACTAL, Greedy and Worst has 0.12

381 778

each. For 778 vehicle configuration CPSO
has 0.09, MARIA and FRACTAL with 0.1,
while Greedy and Worst is tied with 0.07.
For 1175 vehicle configuration CPSO has
0.08, MARIA and FRACTAL with 0.1,
while Greedy and Worst is tied with 0.06.

1175

Cloudlets

ECPSO mMARIA ®mFRACTAL

Figure 4.4: Comparison for Throughput

CONCLUSION

As smart transportation systems, vehicle
numbers, and technology evolve, smart
cities face new obstacles to improve their
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services. One of the issues is improving
vehicle service requests for faster and more
efficient operations. Cloud computing
enables speedier service delivery. However,
limited computational resources necessitate
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optimizing resource allocation. This paper
introduces the CPSO, an improved version
of the bio-inspired PSO algorithm that
optimizes resource allocation in VANETSs.
The CPSO are easily adaptable to various
environments and circumstances.
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